CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 847-857.DOI: 10.11949/0438-1157.20231038
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Sirui CHEN1(), Jingliang BI2, Lei WANG1, Yuanyuan LI3, Gui LU3()
Received:
2023-10-07
Revised:
2023-12-29
Online:
2024-05-11
Published:
2024-03-25
Contact:
Gui LU
陈思睿1(), 毕景良2, 王雷1, 李元媛3, 陆规3()
通讯作者:
陆规
作者简介:
陈思睿(1999—),女,硕士研究生, chen_Echo277@163.com
基金资助:
CLC Number:
Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application[J]. CIESC Journal, 2024, 75(3): 847-857.
陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857.
Add to citation manager EndNote|Ris|BibTeX
流型 | 数值表示 |
---|---|
泡状流 | [1, 0, 0, 0] |
塞状流 | [0, 1, 0, 0] |
弥散流 | [0, 0, 1, 0] |
环状流 | [0, 0, 0, 1] |
Table 1 Numerical representation of flow pattern
流型 | 数值表示 |
---|---|
泡状流 | [1, 0, 0, 0] |
塞状流 | [0, 1, 0, 0] |
弥散流 | [0, 0, 1, 0] |
环状流 | [0, 0, 0, 1] |
指标 | 概念 |
---|---|
精确度(precision) | 查准率,表示所有被预测少数类的样本中,真正的少数类所占的比例。精确度越低代表判错了越多的多数类。是将多数类判错后所需付出成本的衡量 |
召回率(recall) | 查全率,表示所有真实为少数类的样本中,被预测正确的样本所占的比例。越低代表捕捉到了越少的少数类 |
F1分数(F1 score) | 精确度和召回率的调和平均 |
Table 2 Classifier index
指标 | 概念 |
---|---|
精确度(precision) | 查准率,表示所有被预测少数类的样本中,真正的少数类所占的比例。精确度越低代表判错了越多的多数类。是将多数类判错后所需付出成本的衡量 |
召回率(recall) | 查全率,表示所有真实为少数类的样本中,被预测正确的样本所占的比例。越低代表捕捉到了越少的少数类 |
F1分数(F1 score) | 精确度和召回率的调和平均 |
流型类别 | Random forest | RF+Con_AE |
---|---|---|
泡状流 | 90.16% | 98.39% |
塞状流 | 89.09% | 98.15% |
弥散流 | 91.34% | 100.00% |
环状流 | 95.17% | 100.00% |
样本个数 | 252 | 252 |
Table 3 Evaluation of the effect of convolutional autoencoder
流型类别 | Random forest | RF+Con_AE |
---|---|---|
泡状流 | 90.16% | 98.39% |
塞状流 | 89.09% | 98.15% |
弥散流 | 91.34% | 100.00% |
环状流 | 95.17% | 100.00% |
样本个数 | 252 | 252 |
分类器 | 查准率/% | 查全率/% | F1分数/% | 样本个数 |
---|---|---|---|---|
random forest | 99.09 | 99.21 | 99.13 | 252 |
SVM | 99.21 | 99.21 | 99.13 | 252 |
BP | 99.18 | 99.21 | 99.18 | 252 |
Table 4 Effect evaluation of different classifiers
分类器 | 查准率/% | 查全率/% | F1分数/% | 样本个数 |
---|---|---|---|---|
random forest | 99.09 | 99.21 | 99.13 | 252 |
SVM | 99.21 | 99.21 | 99.13 | 252 |
BP | 99.18 | 99.21 | 99.18 | 252 |
1 | Wang T, Liu Z H, Gui M, et al. Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles[J]. Flow Measurement and Instrumentation, 2021, 79: 101928. |
2 | O’Donovan A, Grimes R. Two-phase flow regime identification through local temperature mapping[J]. Experimental Thermal and Fluid Science, 2020, 115: 110077. |
3 | Zhang Y C, Azman A N, Xu K W, et al. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning[J]. Experiments in Fluids, 2020, 61(10): 212. |
4 | Nnabuife S G, Kuang B Y, Whidborne J F, et al. Development of gas-liquid flow regimes identification using a noninvasive ultrasonic sensor, belt-shape features, and convolutional neural network in an S-shaped riser[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 3-17. |
5 | Li X N, Liu M Y, Ma Y L, et al. Experiments and meso-scale modeling of phase holdups and bubble behavior in gas-liquid-solid mini-fluidized beds[J]. Chemical Engineering Science, 2018, 192: 725-738. |
6 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 101-108. |
Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 101-108. | |
7 | 仝卫国, 庞雪纯, 朱赓宏. 基于卷积神经网络的气液两相流流型识别方法[J]. 系统仿真学报, 2021, 33(4): 883-891. |
Tong W G, Pang X C, Zhu G H. Flow pattern identification method of gas-liquid two-phase flow based on convolutional neural network[J]. Journal of System Simulation, 2021, 33(4): 883-891. | |
8 | 梁法春, 陈婧, 冉云麒, 等. 基于迁移学习的水平管气液两相流型智能识别[J]. 实验室研究与探索, 2021, 40(7): 1-5. |
Liang F C, Chen J, Ran Y Q, et al. Investigation of transfer learning for horizontal pipe gas-liquid two-phase flow pattern identification[J]. Research and Exploration in Laboratory, 2021, 40(7): 1-5. | |
9 | Chiu P H, Lin Y S, Manie Y C, et al. Intensity and wavelength-division multiplexing fiber sensor interrogation using a combination of autoencoder pre-trained convolution neural network and differential evolution algorithm[J]. IEEE Photonics Journal, 2021, 13(1): 6600709. |
10 | Xia Z M, Chen Y, Xu C. Multiview PCA: a methodology of feature extraction and dimension reduction for high-order data[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 11068-11080. |
11 | 石延新, 何进荣, 李照奎, 等. 3D卷积自编码器高光谱图像分类模型[J]. 中国图象图形学报, 2021, 26(8): 2021-2036. |
Shi Y X, He J R, Li Z K, et al. Hyperspectral image classification model based on 3D convolutional auto-encoder[J]. Journal of Image and Graphics, 2021, 26(8): 2021-2036. | |
12 | 马龙博, 张宏建, 周洪亮, 等. 基于Hilbert-Huang变换和支持向量机的油水两相流流型识别[J]. 化工学报, 2007, 58(3): 617-622. |
Ma L B, Zhang H J, Zhou H L, et al. Flow regime identification of oil-water two-phase flow based on HHT and SVM[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 617-622. | |
13 | 周云龙, 孙斌, 陆军. 改进BP神经网络在气液两相流流型识别中的应用[J]. 化工学报, 2005, 56(1): 110-115. |
Zhou Y L, Sun B, Lu J. Application of improved BP neural network in identification of air-water two-phase flow patterns[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(1): 110-115. | |
14 | 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. |
Weng R Y, Sun B, Zhao Y X, et al. Flow pattern recognition method of gas-liquid two-phase flow based on adaptive optimal kernel and convolution neural network[J]. CIESC Journal, 2018, 69(12): 5065-5072. | |
15 | Tan C, Dong F, Wu M M. Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction[J]. Flow Measurement and Instrumentation, 2007, 18(5/6): 255-261. |
16 | Sarker I H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions[J]. SN Computer Science, 2021, 2(6): 420. |
17 | Liu W B, Wang Z D, Liu X H, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. |
18 | Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
19 | Chang C C, Lin C J. Training v-support vector regression: theory and algorithms[J]. Neural Computation, 2002, 14(8): 1959-1977. |
20 | 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020: 224-228. |
Qiu X P. Neural Networks and Deep Learning[M]. Beijing: China Machine Press, 2020: 224-228. | |
21 | 薛英杰, 陈颀, 周松斌, 等. 基于自监督特征提取的机械异常声音检测[J]. 激光与光电子学进展, 2022, 59(12): 1215013. |
Xue Y J, Chen Q, Zhou S B, et al. Mechanical abnormal sound detection based on self-supervised feature extraction[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215013.. | |
22 | Fan X J, Wang X Y, Jiang M Y, et al. An improved stacked autoencoder for metabolomic data classification[J]. Computational Intelligence and Neuroscience, 2021, 2021: 1051172. |
23 | Hou L, Luo X Y, Wang Z Y, et al. Representation learning via a semi-supervised stacked distance autoencoder for image classification[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(7): 1005-1018. |
24 | Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. J. Mach. Learn. Res., 2010, 11: 3371-3408. |
25 | Chauhan R, Ghanshala K K, Joshi R C. Convolutional neural network (CNN) for image detection and recognition[C]//2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). Piscataway, NJ: IEEE, 2018: 278-282. |
26 | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. . |
27 | Lalitha R, Tamilselvi D J J. Improved deep convolution neural networks classification amygdala of image mining technique using ASD accuracy[J]. International Journal of Engineering and Advanced Technology, 2019, 8(6s): 796-803. |
28 | Hassanzadeh T, Essam D, Sarker R. EvoDCNN: an evolutionary deep convolutional neural network for image classification[J]. Neurocomputing, 2022, 488: 271-283. |
29 | Yu H G, Tao J F, Qin C J, et al. A novel constrained dense convolutional autoencoder and DNN-based semi-supervised method for shield machine tunnel geological formation recognition[J]. Mechanical Systems and Signal Processing, 2022, 165: 108353. |
30 | Wang J, Liang J Y, Yao K X, et al. Graph convolutional autoencoders with co-learning of graph structure and node attributes[J]. Pattern Recognition, 2022, 121: 108215. |
[1] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[2] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[3] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[4] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[5] | Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration [J]. CIESC Journal, 2024, 75(2): 493-504. |
[6] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[7] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[8] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[9] | Bidan ZHAO, Yiyang DAI, Junwu WANG, Yongmin ZHANG. CFD-DEM-IBM simulation on force characteristic on inclined-surface baffles in fluidized beds [J]. CIESC Journal, 2024, 75(1): 255-267. |
[10] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[11] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[13] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[14] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[15] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||