CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 493-504.DOI: 10.11949/0438-1157.20231294
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qichao LIU1(), Shibo ZHANG1, Yunlong ZHOU1(), Yuqing LI1, Cong CHEN2, Yiwen RAN1
Received:
2023-12-04
Revised:
2024-01-11
Online:
2024-04-10
Published:
2024-02-25
Contact:
Yunlong ZHOU
刘起超1(), 张世博1, 周云龙1(), 李昱庆1, 陈聪2, 冉议文1
通讯作者:
周云龙
作者简介:
刘起超(1991—),男,博士,讲师,lqcliuqichao@126.com
基金资助:
CLC Number:
Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration[J]. CIESC Journal, 2024, 75(2): 493-504.
刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504.
Add to citation manager EndNote|Ris|BibTeX
测量参数 | 仪器 | 量程 | 精度 | 相对不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
水体积 | 量筒 | 2000 ml | 20 ml | 0.54~12.8 |
Table 1 Experimental instrument and uncertainty
测量参数 | 仪器 | 量程 | 精度 | 相对不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
水体积 | 量筒 | 2000 ml | 20 ml | 0.54~12.8 |
管径/mm | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
15~20 | 9.01 | 11.66 | 9.29 |
20~25 | 9.18 | 16.78 | 8.1 |
Table 2 Effect of pipe diameter on the transition boundary of the flow regimes
管径/mm | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
15~20 | 9.01 | 11.66 | 9.29 |
20~25 | 9.18 | 16.78 | 8.1 |
振频/Hz | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
0.42~0.70 | 6.02 | 11.34 | 6.55 |
0.70~0.98 | 5.82 | 10.8 | 6.15 |
Table 3 Effect of vibration frequency on the transition boundary of the flow regimes
振频/Hz | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
0.42~0.70 | 6.02 | 11.34 | 6.55 |
0.70~0.98 | 5.82 | 10.8 | 6.15 |
振幅/mm | 液相折算速度平均变化率/% | 气相折算速度平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
100~150 | 6.43 | 11.28 | 7.25 |
150~180 | 6.61 | 12.21 | 5.91 |
Table 4 Effect of vibration amplitude on transition boundary of the flow regimes
振幅/mm | 液相折算速度平均变化率/% | 气相折算速度平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
100~150 | 6.43 | 11.28 | 7.25 |
150~180 | 6.61 | 12.21 | 5.91 |
1 | 邹树梁, 葛馨, 黄燕. 海上浮动核电站发展现状及政策标准[J]. 舰船科学技术, 2019, 41(19): 80-83, 93. |
Zou S L, Ge X, Huang Y. Research on development status and policy standards of floating nuclear power plants at home and abroad[J]. Ship Science and Technology, 2019, 41(19): 80-83, 93. | |
2 | Ghadimi P, Paselar Bandari H, Bankhshandeh Rostami A. Determination of the heave and pitch motions of a floating cylinder by analytical solution of its diffraction problem and examination of the effects of geometric parameters on its dynamics in regular waves[J]. International Journal of Applied Mathematical Research, 2012, 1(4): 611-633. |
3 | 栾锋, 阎昌琪. 摇摆状态下水平管内气-水两相流的流型研究[J]. 核动力工程, 2007, 28(2): 19-23. |
Luan F, Yan C Q. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes[J]. Nuclear Power Engineering, 2007, 28(2): 19-23. | |
4 | 张金红, 阎昌琪, 方红宇, 等. 摇摆对水平管内气液两相流流型的影响[J]. 核科学与工程, 2007, 27(3): 206-212. |
Zhang J H, Yan C Q, Fang H Y, et al. Effects of rolling on gas-water two-phase flow in horizontal pipes[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27(3): 206-212. | |
5 | 张金红, 阎昌琪, 孙中宁. 摇摆状态下水平管内气液两相流流型转换研究[J]. 哈尔滨工程大学学报, 2008, 29(10): 1050-1053. |
Zhang J H, Yan C Q, Sun Z N. Investigation of flow pattern transition for gas-liquid two-phase flow in horizontal rolling pipes[J]. Journal of Harbin Engineering University, 2008, 29(10): 1050-1053. | |
6 | 栾锋, 阎昌琪, 曹夏昕. 摇摆对竖直管内气-水两相流流型的影响分析[J]. 工程热物理学报, 2007, 28(S1): 217-220. |
Luan F, Yan C Q, Cao X X. Analysis of the influence of rocking on the flow pattern of gas-water two-phase flow in vertical pipe[J]. Journal of Engineering Thermophysics, 2007, 28(S1): 217-220. | |
7 | 贾辉, 曹夏昕, 阎昌琪, 等. 摇摆状态下气液两相流流型转变的实验研究[J]. 核科学与工程, 2006, 26(3): 209-214, 198. |
Jia H, Cao X X, Yan C Q, et al. Experimental study on two-phase flow pattern transition in rolling tubes[J]. Chinese Journal of Nuclear Science and Engineering, 2006, 26(3): 209-214, 198. | |
8 | 阎昌琪, 于凯秋, 栾锋, 等. 摇摆对气-液两相流流型及空泡份额的影响[J]. 核动力工程, 2008, 29(4): 35-38, 49. |
Yan C Q, Yu K Q, Luan F, et al. Rolling effects on two-phase flow pattern and void friction[J]. Nuclear Power Engineering, 2008, 29(4): 35-38, 49. | |
9 | 王广飞, 阎昌琪, 曹夏昕, 等. 摇摆状态下窄矩形通道内两相流流型特性研究[J]. 原子能科学技术, 2011, 45(11): 1329-1333. |
Wang G F, Yan C Q, Cao X X, et al. Flow pattern characteristics of two-phase flow through narrow rectangular channel under rolling condition[J]. Atomic Energy Science and Technology, 2011, 45(11): 1329-1333. | |
10 | Xie T Z, Xu J J, Chen B D, et al. Upward two-phase flow patterns in vertical circular pipe under rolling condition[J]. Progress in Nuclear Energy, 2020, 129: 103506. |
11 | 谢添舟, 徐建军, 卓文彬, 等. 摇摆运动对弹状流向搅拌流转变边界的影响研究[J]. 原子能科学技术, 2020, 54(9): 1589-1594. |
Xie T Z, Xu J J, Zhuo W B, et al. Study on influence of rolling motion on transition boundary of slug flow to churn flow[J]. Atomic Energy Science and Technology, 2020, 54(9): 1589-1594. | |
12 | 谢添舟, 徐建军, 卓文彬, 等. 摇摆条件下弥散泡状流-泡状流转变准则模型验证[J]. 核动力工程, 2020, 41(S1): 22-26. |
Xie T Z, Xu J J, Zhuo W B, et al. Model verification of dispersive bubble flow-bubble flow transition criterion under rolling condition[J]. Nuclear Power Engineering, 2020, 41(S1): 22-26. | |
13 | 肖秀, 朱庆子, 王冠轶, 等. 振动工况下环管内气液两相流参数分布实验研究[J]. 原子能科学技术, 2017, 51(1): 19-26. |
Xiao X, Zhu Q Z, Wang G Y, et al. Experiment investigation on two-phase flow parameter distribution in annular channel vibration condition[J]. Atomic Energy Science and Technology, 2017, 51(1): 19-26. | |
14 | Wu X, Liu J W, Xu S M, et al. Effect of vibration parameters on the bubble absorption characteristics of working fluids R134a-DMAC in a vertical tube[J]. International Journal of Refrigeration, 2019, 99: 234-242. |
15 | 周云龙, 赵盘, 杨宁. 振动状态下水平管内气液两相流流型转变的实验研究[J]. 热能动力工程, 2017, 32(6): 17-22, 130. |
Zhou Y L, Zhao P, Yang N. Experimental study on flow pattern transition of gas liquid two-phase flow in horizontal tubes under vibration condition[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 17-22, 130. | |
16 | 周云龙, 常赫, 赵盘. 起伏振动状态下水平管内气液两相流研究[J]. 振动与冲击, 2019, 38(20): 1-6, 17. |
Zhou Y L, Chang H, Zhao P. A study on gas-liquid two-phase flow in a horizontal tube under heaving motion[J]. Journal of Vibration and Shock, 2019, 38(20): 1-6, 17. | |
17 | 周云龙, 汪俊超, 刘起超. 起伏非线性振动下倾斜上升管内气液两相流流型转变分析[J]. 原子能科学技术, 2020, 54(10): 1787-1794. |
Zhou Y L, Wang J C, Liu Q C. Analysis of gas-liquid two-phase flow pattern transition in inclined rising pipe under fluctuant nonlinear vibration condition[J]. Atomic Energy Science and Technology, 2020, 54(10): 1787-1794. | |
18 | 孙博, 周云龙, 刘启超. 横向振动下水平通道内气液两相流型研究[J]. 振动与冲击, 2021, 40(20): 302-306. |
Sun B, Zhou Y L, Liu Q C. A study on flow regime of gas-liquid two-phase in a horizontal channel under transverse vibration[J]. Journal of Vibration and Shock, 2021, 40(20): 302-306. | |
19 | Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. |
20 | Taitel Y, Dukler A E. A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes[J]. International Journal of Multiphase Flow, 1977, 3(6): 585-596. |
21 | Weisman J, Duncan D, Gibson J, et al. Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines[J]. International Journal of Multiphase Flow, 1979, 5(6): 437-462. |
22 | Barnea D, Shoham O, Taitel Y, et al. Gas-liquid flow in inclined tubes: flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1): 131-136. |
23 | Barnea D. Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5): 733-744. |
24 | Lin P Y, Hanratty T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4): 549-563. |
25 | Woods B D, Hanratty T J. Relation of slug stability to shedding rate[J]. International Journal of Multiphase Flow, 1996, 22(5): 809-828. |
26 | Kokal S L, Stanislav J F. An experimental study of two-phase flow in slightly inclined pipes(1): Flow patterns[J]. Chemical Engineering Science, 1989, 44(3): 665-679. |
27 | Nie T F, Xu Q, She Y L, et al. The behavior of surface nanobubbles on different substrates in electrochemistry[J]. Journal of Molecular Liquids, 2024, 394: 123791. |
28 | Hong A Y, Xu Q, Jiang S Z, et al. Experimental study of interface behavior and sound pressure oscillation of direct contact condensation of a steam jet in flowing water[J]. Experimental Thermal and Fluid Science, 2024, 150: 111054. |
29 | Massel S R. Ocean Surface Waves: Their Physics and Prediction[M]. Singapore: World Scientific, 1996. |
30 | Yang C Y, Xu Q, Chang L, et al. Interstage performance and power consumption of a multistage mixed-flow electrical submersible pump in gas-liquid conditions: an experimental study[J]. ASME. Journal of Fluids Engineering, 2024, 146(5): 051203. |
31 | Xue Y Q, Li H X, Hao C Y, et al. Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes[J]. International Communications in Heat and Mass Transfer, 2016, 77: 1-8. |
32 | 陆廷济. 物理实验教程[M]. 上海: 同济大学出版社, 2000: 14-15. |
Lu T J. Physical Experiment Course[M]. Shanghai: Tongji University Press, 2000: 14-15. | |
33 | 周云龙, 李珊珊. 起伏振动状态下倾斜管气液两相流型实验研究[J]. 原子能科学技术, 2018, 52(2): 262-268. |
Zhou Y L, Li S S. Experiment investigation on gas-liquid two-phase flow pattern in inclined pipe under fluctuant vibration condition[J]. Atomic Energy Science and Technology, 2018, 52(2): 262-268. | |
34 | Barnea D. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1): 1-12. |
35 | Fang X D, Xu Y, Zhou Z R. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations[J]. Nuclear Engineering and Design, 2011, 241(3): 897-902. |
36 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. |
[1] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[2] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[3] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[4] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[5] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[6] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[7] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[8] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[9] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[10] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[11] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[12] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[13] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[14] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[15] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||