1 |
冯连芳, 张才亮, 王嘉骏, 等. 聚合过程强化技术[M]. 北京: 化学工业出版社, 2020.
|
|
Feng L F, Zhang C L, Wang J J, et al. Polymerization Process Intensification[M]. Beijing: Chemical Industry Press, 2020.
|
2 |
成文凯. 卧式双轴搅拌脱挥设备的成膜特性与传质过程强化[D]. 杭州: 浙江大学, 2019.
|
|
Cheng W K. Investigations of film formation characteristics and mass transfer intensification in the horizontal twin-shaft agitating devolatilizers[D]. Hangzhou: Zhejiang University, 2019.
|
3 |
成文凯, 王嘉骏, 顾雪萍, 等. 聚合物搅拌脱挥设备及其CFD模拟研究进展[J]. 化工进展, 2016, 35(5): 1283-1288.
|
|
Cheng W K, Wang J J, Gu X P, et al. Progress on agitated apparatus for polymer devolatilization and its CFD simulation[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1283-1288.
|
4 |
许超众, 冯连芳. 聚合过程强化技术的发展[J]. 化工进展, 2018, 37(4): 1314-1322.
|
|
Xu C Z, Feng L F. Process intensification technologies for polymerization[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1314-1322.
|
5 |
Fleury P, Liechti P. Process and apparatus for treating viscous products: US8222355[P]. 2012-07-17.
|
6 |
Fleury P, Isenschmid T, Liechti P. Method for the continuous implementation of polymerisation processes: US8376607[P]. 2013-02-19.
|
7 |
Fleury P, Liechti P. Process and apparatus for treating viscous products: US8678641[P]. 2014-03-25.
|
8 |
Stueven U, van Miert L, van Esbroeck D, et al. Mixing kneader and process for preparing poly(meth)acrylates using the mixing kneader: US8070351[P]. 2011-12-06.
|
9 |
Fleury P A. Bulk polymerisation or copolymerisation in a novel continuous kneader reactor[J]. Macromolecular Symposia, 2006, 243(1): 287-298.
|
10 |
Dittler A, Bamberger T, Gehrmann D, et al. Measurement and simulation of the vacuum contact drying of pastes in a LIST-type kneader drier[J]. Chemical Engineering and Processing: Process Intensification, 1997, 36(4): 301-308.
|
11 |
Belkhiria S, Fleury P A, Al-Alim I. Process for the production of SAP: US7398606[P]. 2008-07-15.
|
12 |
Liechti P, Kunz A, List J, et al. Kneader mixer: US5823674[P]. 1998-10-20.
|
13 |
List H, List J. Kneader-mixer: US4824257[P]. 1989-04-25.
|
14 |
Kunz A, List H, List J. Kneader-mixer: US4826324[P]. 1989-05-02.
|
15 |
Liechti P. Mixing kneader with kneading forks: US4889431[P]. 1989-12-26.
|
16 |
List J M, Schwenk W, Kunz A. Mixing kneader: US5121992[P]. 1992-06-16.
|
17 |
List J, Schwenk W, Dotsch W, et al. Continuously operating mixing kneader: US5147135[P]. 1992-09-15.
|
18 |
List J, Schwenk W, Kunz A. Mixing and kneading apparatus: US5934801[P]. 1999-08-10.
|
19 |
成文凯. 一种卧式单轴自清洁搅拌设备: CN116078211A[P]. 2023-05-09.
|
|
Cheng W K. Horizontal single-shaft self-cleaning stirring equipment: CN116078211A[P]. 2023-05-09.
|
20 |
Arnaud D, Kunz A, Fleury P A. Devices for carrying out mechanical, chemical and/or thermal processes: US9126158[P]. 2015-09-08.
|
21 |
Palmer D. Mixing kneader: US6039469[P]. 2000-03-21.
|
22 |
Dotsch W, Schwenk W, Kunz A. Mixing kneader with rotating shafts and kneading bars: US5407266[P]. 1995-04-18.
|
23 |
List H, Schwenk W, Kunz A. Multi-spindle kneading mixer with fixed kneading counterelements: US4941130[P]. 1990-07-10.
|
24 |
List H. Multi-spindle kneading mixer: US4950081[P]. 1990-08-21.
|
25 |
List H. Multiple-spindle mixing kneader apparatus: US3689035[P]. 1972-09-05.
|
26 |
Schuchardt H. Mixing apparatus: US6260995[P]. 2001-07-17.
|
27 |
Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and cohesive mixing materials: US5876115[P]. 1999-03-02.
|
28 |
Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and solids-bearing materials to be mixed: US5658075[P]. 1997-08-19.
|
29 |
Schebesta K, Schuchardt H, Ullrich M. Completely self-cleaning mixer/reactor: US5669710[P]. 1997-09-23.
|
30 |
Schuchardt H. Multiple shaft mixing device providing full kinematic self-cleaning: US5505536[P]. 1996-04-09.
|
31 |
Schuchardt H, Ullrich M. Fully self-cleaning reactor/mixer with a large usable volume: US5399012[P]. 1995-03-21.
|
32 |
Schuchardt H, Ullrich M. Self-cleaning reactor/mixer with large useful volume: US5334358[P]. 1994-08-02.
|
33 |
叶阳, 王嘉骏, 成文凯, 等. 一种搅拌装置和一种卧式双轴自清洁反应器: CN108236910B[P]. 2020-04-10.
|
|
Ye Y, Wang J J, Cheng W K, et al. Stirring device and horizontal twin-shaft self-cleaning reactor: CN108236910B[P]. 2020-04-10.
|
34 |
成文凯, 王嘉骏, 顾雪萍, 等. 一种用于聚酯终缩聚的卧式双轴自清洁搅拌设备: CN114272789A[P]. 2022-04-05.
|
|
Cheng W K, Wang J J, Gu X P, et al. Horizontal twin-shaft self-cleaning stirring equipment for polyester final polycondensation: CN114272789A[P]. 2022-04-05.
|
35 |
成文凯. 一种卧式双轴自清洁搅拌设备: CN116078257A[P]. 2023-05-09.
|
|
Cheng W K. Horizontal twin-shaft self-cleaning stirring equipment: CN116078257A[P]. 2023-05-09.
|
36 |
时振方, 蔡子琦, 石代嗯, 等. 一种具有三轴转子的聚合物脱挥装置: CN217856168U[P]. 2022-11-22.
|
|
Shi Z F, Cai Z Q, Shi D E, et al. Polymer devolatilization device with three-shaft rotor: CN217856168U[P]. 2022-11-22.
|
37 |
马宏, 房宾, 孙德超, 等. 一种新型三轴连续聚合反应脱挥挤出机: CN114454459A[P]. 2022-05-10.
|
|
Ma H, Fang B, Sun D C, et al. Novel three-shaft continuous polymerization reaction devolatilization extruder: CN114454459A[P]. 2022-05-10.
|
38 |
刘荣. 新型卧式搅拌装置特性研究与设计开发[D]. 天津: 天津大学, 2009.
|
|
Liu R. Study on the features of horizontal stirring devices and design process[D]. Tianjin: Tianjin University, 2009.
|
39 |
单纯. 卧式单轴自清洁搅拌釜数值模拟[D]. 天津: 天津大学, 2013.
|
|
Shan C. Numerical simulation of horizontal agitated tank with the function of self-cleaning[D]. Tianjin: Tianjin University, 2013.
|
40 |
罗彬彬. 卧式单轴自清洁搅拌釜气液分层流和传热过程数值研究[D]. 天津: 天津大学, 2017.
|
|
Luo B B. Numerical study of gas-liquid stratified flow and heat transfer in horizontal self-cleaning single-shaft stirred tank[D]. Tianjin: Tianjin University, 2017.
|
41 |
杨腾. D-T型卧式双轴搅拌装置的数值模拟[D]. 天津: 天津大学, 2010.
|
|
Yang T. Numerical simulation of D-T model horizontal biaxial agitated tank[D]. Tianjin: Tianjin University, 2010.
|
42 |
刘叶凤. 卧式双轴搅拌釜数值模拟与实验研究[D]. 天津: 天津大学, 2013.
|
|
Liu Y F. Numerical simulation and experimental study of horizontal twin-shaft stirred tank[D]. Tianjin: Tianjin University, 2013.
|
43 |
付正强. 卧式双轴搅拌釜内固液两相流的数值模拟与实验研究[D]. 天津: 天津大学, 2014.
|
|
Fu Z Q. Numerical simulation and experimental study of solid-liquid two-phase flow in horizontal biaxial stirred tank[D]. Tianjin: Tianjin University, 2014.
|
44 |
成文凯, 张先明, 王嘉骏, 等. 卧式单轴捏合反应器流动与混合特性的数值模拟[J]. 化工学报, 2022, 73(5): 1995-2007.
|
|
Cheng W K, Zhang X M, Wang J J, et al. Numerical simulation of hydrodynamics and mixing characteristics in a horizontal single-shaft kneader[J]. CIESC Journal, 2022, 73(5): 1995-2007.
|
45 |
Cheng W K. CFD simulation on flow and mixing process in different horizontal self-cleaning single-shaft kneaders[J]. Chemical Engineering Journal Advances, 2023, 14: 100480.
|
46 |
Cheng W K, Ye Y, Jiang S X, et al. Mixing intensification in a horizontal self-cleaning twin-shaft kneader with a highly viscous Newtonian fluid[J]. Chemical Engineering Science, 2019, 201: 437-447.
|
47 |
Cheng W K, Xin S C, Chen S C, et al. Hydrodynamics and mixing process in a horizontal self-cleaning opposite-rotating twin-shaft kneader[J]. Chemical Engineering Science, 2021, 241: 116700.
|
48 |
成文凯, 张先明, 王嘉骏, 等. 反向旋转卧式双轴捏合反应器混合特性的数值模拟[J]. 化工学报, 2022, 73(1): 162-174.
|
|
Cheng W K, Zhang X M, Wang J J, et al. Numerical simulation of mixing process in different opposite-rotating horizontal twin-shaft kneaders[J]. CIESC Journal, 2022, 73(1): 162-174.
|
49 |
Cheng W K. Comparison of mixing mechanism under different rotating directions in a horizontal self-cleaning differential rotating twin-shaft kneader[J]. Chemical Engineering Journal Advances, 2023, 14: 100462.
|
50 |
王迪. 高黏卧式双轴反应器流体力学特征的研究[D]. 北京: 北京化工大学, 2021.
|
|
Wang D. Study on hydrodynamic characteristics of high viscosity horizontal double-shaft devotilization reactor[D]. Beijing: Beijing University of Chemical Technology, 2021.
|
51 |
Cheng W K, Wang J J, Gu X P, et al. Film formation and mass transfer characteristics in a horizontal self-cleaning twin-shaft kneader with highly viscous Newtonian fluids[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1405-1411.
|
52 |
叶阳. 新型卧式双轴反应器的CFD模拟与传质研究[D]. 杭州: 浙江大学, 2019.
|
|
Ye Y. CFD simulation and mass transfer study of a novel horizontal twin-shaft reactor[D]. Hangzhou: Zhejiang University, 2019.
|
53 |
安澍. 卧式双轴捏合反应器成膜特性及混合特性CFD模拟研究[D]. 杭州: 浙江大学, 2023.
|
|
An S. CFD simulation study on film-forming characteristics and mixing characteristics of horizontal biaxial kneading reactor[D]. Hangzhou: Zhejiang University, 2023.
|
54 |
An S, Liao Z W, Hong X D, et al. Hydrodynamics and film formation characteristics in a horizontal self-cleaning twin-shaft kneader for polymer devolatilization[J]. Journal of Applied Polymer Science, 2023, 140(4): e53350.
|
55 |
赵轶, 冯连芳, 顾雪萍, 等. 卧式双轴T型搅拌器在牛顿流体中的功率消耗[J]. 化学工程, 2000, 28(4): 32-35, 3.
|
|
Zhao Y, Feng L F, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitator in Newtonian fluid[J]. Chemical Engineering (China), 2000, 28(4): 32-35, 3.
|
56 |
冯连芳, 赵轶, 顾雪萍, 等. 卧式双轴T型搅拌器在非牛顿流体中的搅拌功率特性[J]. 化学反应工程与工艺, 2000, 16(4): 331-336.
|
|
Feng L F, Zhao Y, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitators in the non-Newtonian fluid[J]. Chemical Reaction Engineering and Technology, 2000, 16(4): 331-336.
|
57 |
Seck O, Maxisch T, Warnecke H J, et al. Investigation of the mixing- and devolatilization behavior in a continuous twin-shaft kneader[J]. Macromolecular Symposia, 2010, 289(1): 155-164.
|
58 |
殷宏鸣. 丙交酯开环聚合制备高分子量聚乳酸: 聚合工艺研究及新型复合催化剂的研发[D]. 扬州: 扬州大学, 2023.
|
|
Yin H M. Preparation of high molecular weight polylactic acid by ring-opening polymerization of lactide-research on polymerization process and development of new composite catalyst[D]. Yangzhou: Yangzhou University, 2023.
|
59 |
Safrit B T, Schlager G. Modeling and simulation of polymerization of lactide to polylactic acid and copolymers of polylactic acid using high viscosity kneader reactors[C]//71st Annual Technical Conference of the Society of Plastics Engineers. 2013.
|
60 |
刘文静, 乐天俊, 任伟民. 氮丙啶衍生物与环状酸酐共聚合成聚酯酰胺[J]. 高分子学报, 2021, 52(7): 717-722.
|
|
Liu W J, Le T J, Ren W M. Copolymerization of aziridine derivatives and cyclic anhydrides to form poly(ester amide)[J]. Acta Polymerica Sinica, 2021, 52(7): 717-722.
|
61 |
高晗, 徐军, 胡欣, 等. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
|
|
Gao H, Xu J, Hu X, et al. Synthesis of poly(ester amide)[J]. Progress in Chemistry, 2018, 30(11): 1634-1645.
|
62 |
Blanchard L, Rader C, Vanoli E, et al. Melt polycondensation for the synthesis of polyester amides using kneader reactor technology[J]. Chimia, 2020, 74(12): 1024-1025.
|
63 |
谢鸿洲, 吴林波, 李伯耿. 生物基聚酯: 聚(2,5-呋喃二甲酸乙二醇酯)合成与改性的研究进展[J]. 生物加工过程, 2019, 17(5): 449-459.
|
|
Xie H Z, Wu L B, Li B G. Progress in the synthesis and modification of bio-based poly (ethylene 2,5-furandicarboxylate)[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(5): 449-459.
|
64 |
周俏, 王昊楠, 史亚飞, 等. 生物基聚酯PEF的研究进展[J]. 工程塑料应用, 2023, 51(1): 140-146, 151.
|
|
Zhou Q, Wang H N, Shi Y F, et al. Research progress of bio-based polyester PEF[J]. Engineering Plastics Application, 2023, 51(1): 140-146, 151.
|
65 |
武佳佳. PEF的流变特性及小分子在PEF基体中的扩散和溶解行为[D]. 杭州: 浙江大学, 2022.
|
|
Wu J J. Rheological properties of poly(ethylene 2,5-furandicarboxylate) (PEF) and diffusion/sorption behavior of small molecules in PEF[D]. Hangzhou: Zhejing University, 2022.
|
66 |
Yu S, Lee J C, Ahn S, et al. Synthesis of bio-based poly(ethylene 2,5-furandicarboxylate) in a kneader reactor and its melt spinning[J]. Polymer Korea, 2020, 44(5): 695-700.
|
67 |
曹湘洪, 张爱民. 溶液聚合合成橡胶节能技术和节能型橡胶的开发[J]. 中国工程科学, 2001, 3(7): 59-63, 69.
|
|
Cao X H, Zhang A M. The energy-saving technology for solution polymerization of synthetic rubber and the development of energy-saving rubber[J]. Engineering Science, 2001, 3(7): 59-63, 69.
|
68 |
崔华, 赵秀红, 金永峰, 等. 乙丙橡胶湿法脱挥工艺研究[J]. 化工科技, 2010, 18(1): 56-59.
|
|
Cui H, Zhao X H, Jin Y F, et al. Study on wet devolatilization technology of EPR[J]. Science & Technology in Chemical Industry, 2010, 18(1): 56-59.
|
69 |
陈力军, 罗军, 侯志强. 三釜凝聚工艺在顺丁橡胶生产中的应用[J]. 合成橡胶工业, 2013, 36(1): 7-11.
|
|
Chen L J, Luo J, Hou Z Q. Application of three-kettle coagulating process in production of cis-1,4-polybutadiene rubber[J]. China Synthetic Rubber Industry, 2013, 36(1): 7-11.
|
70 |
罗军, 张兰波. 三釜凝聚工艺在异戊橡胶生产中的应用[J]. 合成橡胶工业, 2015, 38(6): 418-421.
|
|
Luo J, Zhang L B. Application of three-kettle coagulation process in isoprene rubber production[J]. China Synthetic Rubber Industry, 2015, 38(6): 418-421.
|
71 |
梁爱民. 热塑性弹性体SBS的生产技术现状和发展趋势[J]. 现代化工, 2003, 23(7): 10-14.
|
|
Liang A M. Production technology and development trend of SBS thermoplastic elastomer[J]. Modern Chemical Industry, 2003, 23(7): 10-14.
|
72 |
Safrit B T, Diener A E. Kneader technology for the direct devolatilization of temperature sensitive elastomers[C]//Society of Plastics Engineers Annual Technical Conference. 2008.
|
73 |
谭皓. 活性阴离子聚合制备尼龙6及其纺丝研究[D]. 杭州: 浙江大学, 2022.
|
|
Tan H. Preparation of polyamide 6 by the living anionic polymerization method and its spinning[D]. Hangzhou: Zhejiang University, 2022.
|
74 |
秦春曦. 尼龙6萃取过程新装备和新工艺[D]. 上海: 华东理工大学, 2018.
|
|
Qin C X. New apparatus and new process for Nylon 6 solid-liquid extraction unit[D]. Shanghai: East China University of Science and Technology, 2018.
|
75 |
罗慧如. 活性阴离子聚合制备PA6纤维及其原位增强改性[D]. 杭州: 浙江大学, 2016.
|
|
Luo H R. Preparation of PA6 fiber by the activated anionic polymerization method and its in-situ reinforced modification[D]. Hangzhou: Zhejiang University, 2016.
|
76 |
刘迪, 李德和. 300 t/d聚酰胺6聚合成套设备及工艺技术特点[J]. 合成纤维工业, 2016, 39(1): 58-61.
|
|
Liu D, Li D H. Technological features of 300 t/d polyamide 6 polymerization complete equipment and process[J]. China Synthetic Fiber Industry, 2016, 39(1): 58-61.
|
77 |
王晨. 尼龙6生产过程流程模拟与分析[D]. 上海: 华东理工大学, 2015
|
|
Wang C. Process simulation and analysis of Nylon 6 manufacture process[D]. Shanghai: East China University of Science and Technology, 2015.
|
78 |
Henkel J, Diener A, 王胜东. 熔融相PA6的后缩聚反应[J]. 国际纺织导报, 2002, 30(S2): 15-16.
|
|
Henkel J, Diener A, Wang S D. Post-polycondensation of molten phase PA6[J]. Melliand China, 2002, 30(S2): 15-16.
|