CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 768-781.DOI: 10.11949/0438-1157.20231172
• Reviews and monographs • Previous Articles Next Articles
Wenkai CHENG1(), Jinyu YAN1, Jiajun WANG2, Lianfang FENG2,3
Received:
2023-11-13
Revised:
2024-02-06
Online:
2024-05-11
Published:
2024-03-25
Contact:
Wenkai CHENG
通讯作者:
成文凯
作者简介:
成文凯(1988—),男,博士,chengwenk@163.com
CLC Number:
Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry[J]. CIESC Journal, 2024, 75(3): 768-781.
成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781.
Add to citation manager EndNote|Ris|BibTeX
项目 | List捏合反应器 | 螺杆挤出机 | 薄膜蒸发器 | CSTR | 转盘反应器 |
---|---|---|---|---|---|
反应器体积 | 大 | 小 | 大 | 大 | 大 |
物料停留时间 | 灵活调节 | 短 | 短 | 长 | 长 |
是否需要溶剂 | 否 | 否 | 是 | 是 | 是 |
物料黏度 | 中黏至超高黏 | 中黏至超高黏 | 低黏 | 低黏 | 低黏 |
操作模式 | 间歇或连续 | 连续 | 连续 | 间歇或多釜连续 | 间歇 |
流动行为 | 平推流或有返混 | 平推流 | 平推流 | 有返混 | 有返混 |
生产操作弹性 | 很大 | 较大 | 很小 | 较大 | 很大 |
Table 1 Comparison of characteristics among different reactors
项目 | List捏合反应器 | 螺杆挤出机 | 薄膜蒸发器 | CSTR | 转盘反应器 |
---|---|---|---|---|---|
反应器体积 | 大 | 小 | 大 | 大 | 大 |
物料停留时间 | 灵活调节 | 短 | 短 | 长 | 长 |
是否需要溶剂 | 否 | 否 | 是 | 是 | 是 |
物料黏度 | 中黏至超高黏 | 中黏至超高黏 | 低黏 | 低黏 | 低黏 |
操作模式 | 间歇或连续 | 连续 | 连续 | 间歇或多釜连续 | 间歇 |
流动行为 | 平推流或有返混 | 平推流 | 平推流 | 有返混 | 有返混 |
生产操作弹性 | 很大 | 较大 | 很小 | 较大 | 很大 |
反应器类型 | 体积/L | 操作温度/℃ | 操作压力/bar | 最大功率/MW | 最大扭矩/(kN·m) | 驱动方式 | 搅拌轴密封 |
---|---|---|---|---|---|---|---|
单轴捏合反应器 | 7~20000 | -100~400 | 0.0001~100 | 2.5 | 500 | 液压马达或电机 | 机械或填料密封 |
双轴捏合反应器 | 3~10000 | -100~400 | 0.001~10 | 1.5 | 500 | 液压马达或电机 | 机械或填料密封 |
Table 2 List kneading reactor
反应器类型 | 体积/L | 操作温度/℃ | 操作压力/bar | 最大功率/MW | 最大扭矩/(kN·m) | 驱动方式 | 搅拌轴密封 |
---|---|---|---|---|---|---|---|
单轴捏合反应器 | 7~20000 | -100~400 | 0.0001~100 | 2.5 | 500 | 液压马达或电机 | 机械或填料密封 |
双轴捏合反应器 | 3~10000 | -100~400 | 0.001~10 | 1.5 | 500 | 液压马达或电机 | 机械或填料密封 |
装置 | 体积/L | 表面积/m2 | 比表面积/m-1 | 物料温度/℃ | 物料黏度/(Pa∙s) | 停留时间/h |
---|---|---|---|---|---|---|
CSTR | 125000 | 117 | 0.936 | 195 | 300 | 3.8 |
捏合反应器 | 2900 | 43 | 14.828 | 194(max) | 18(max) | 1.7 |
Table 3 Comparison of different polymerization equipment for PLA
装置 | 体积/L | 表面积/m2 | 比表面积/m-1 | 物料温度/℃ | 物料黏度/(Pa∙s) | 停留时间/h |
---|---|---|---|---|---|---|
CSTR | 125000 | 117 | 0.936 | 195 | 300 | 3.8 |
捏合反应器 | 2900 | 43 | 14.828 | 194(max) | 18(max) | 1.7 |
PEF类型 | 聚合装置 | 数均分子量 | 重均分子量 | PDI | 特性黏度/(dL/g) |
---|---|---|---|---|---|
PEF-1 | 三口烧瓶 | 18177 | 34751 | 1.91 | 0.26 |
PEF-2 | List捏合反应器 | 22376 | 41835 | 1.86 | 0.36 |
Table 4 Comparison of PEF performance prepared by different reactors
PEF类型 | 聚合装置 | 数均分子量 | 重均分子量 | PDI | 特性黏度/(dL/g) |
---|---|---|---|---|---|
PEF-1 | 三口烧瓶 | 18177 | 34751 | 1.91 | 0.26 |
PEF-2 | List捏合反应器 | 22376 | 41835 | 1.86 | 0.36 |
反应器类型 | 功能 | 体积/L | 传热面积/m2 | 转速/(r/min) | 温度/℃ | 操作压力/mbar |
---|---|---|---|---|---|---|
单轴捏合反应器 | 主蒸发器 | 100 | 2.1 | 50~80 | 80 | 300 |
双轴捏合反应器 | 脱挥器 | 200 | 7 | 60 | 80 | 60 |
Table 5 Equipment parameters and operating conditions of used device
反应器类型 | 功能 | 体积/L | 传热面积/m2 | 转速/(r/min) | 温度/℃ | 操作压力/mbar |
---|---|---|---|---|---|---|
单轴捏合反应器 | 主蒸发器 | 100 | 2.1 | 50~80 | 80 | 300 |
双轴捏合反应器 | 脱挥器 | 200 | 7 | 60 | 80 | 60 |
1 | 冯连芳, 张才亮, 王嘉骏, 等. 聚合过程强化技术[M]. 北京: 化学工业出版社, 2020. |
Feng L F, Zhang C L, Wang J J, et al. Polymerization Process Intensification[M]. Beijing: Chemical Industry Press, 2020. | |
2 | 成文凯. 卧式双轴搅拌脱挥设备的成膜特性与传质过程强化[D]. 杭州: 浙江大学, 2019. |
Cheng W K. Investigations of film formation characteristics and mass transfer intensification in the horizontal twin-shaft agitating devolatilizers[D]. Hangzhou: Zhejiang University, 2019. | |
3 | 成文凯, 王嘉骏, 顾雪萍, 等. 聚合物搅拌脱挥设备及其CFD模拟研究进展[J]. 化工进展, 2016, 35(5): 1283-1288. |
Cheng W K, Wang J J, Gu X P, et al. Progress on agitated apparatus for polymer devolatilization and its CFD simulation[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1283-1288. | |
4 | 许超众, 冯连芳. 聚合过程强化技术的发展[J]. 化工进展, 2018, 37(4): 1314-1322. |
Xu C Z, Feng L F. Process intensification technologies for polymerization[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1314-1322. | |
5 | Fleury P, Liechti P. Process and apparatus for treating viscous products: US8222355[P]. 2012-07-17. |
6 | Fleury P, Isenschmid T, Liechti P. Method for the continuous implementation of polymerisation processes: US8376607[P]. 2013-02-19. |
7 | Fleury P, Liechti P. Process and apparatus for treating viscous products: US8678641[P]. 2014-03-25. |
8 | Stueven U, van Miert L, van Esbroeck D, et al. Mixing kneader and process for preparing poly(meth)acrylates using the mixing kneader: US8070351[P]. 2011-12-06. |
9 | Fleury P A. Bulk polymerisation or copolymerisation in a novel continuous kneader reactor[J]. Macromolecular Symposia, 2006, 243(1): 287-298. |
10 | Dittler A, Bamberger T, Gehrmann D, et al. Measurement and simulation of the vacuum contact drying of pastes in a LIST-type kneader drier[J]. Chemical Engineering and Processing: Process Intensification, 1997, 36(4): 301-308. |
11 | Belkhiria S, Fleury P A, Al-Alim I. Process for the production of SAP: US7398606[P]. 2008-07-15. |
12 | Liechti P, Kunz A, List J, et al. Kneader mixer: US5823674[P]. 1998-10-20. |
13 | List H, List J. Kneader-mixer: US4824257[P]. 1989-04-25. |
14 | Kunz A, List H, List J. Kneader-mixer: US4826324[P]. 1989-05-02. |
15 | Liechti P. Mixing kneader with kneading forks: US4889431[P]. 1989-12-26. |
16 | List J M, Schwenk W, Kunz A. Mixing kneader: US5121992[P]. 1992-06-16. |
17 | List J, Schwenk W, Dotsch W, et al. Continuously operating mixing kneader: US5147135[P]. 1992-09-15. |
18 | List J, Schwenk W, Kunz A. Mixing and kneading apparatus: US5934801[P]. 1999-08-10. |
19 | 成文凯. 一种卧式单轴自清洁搅拌设备: CN116078211A[P]. 2023-05-09. |
Cheng W K. Horizontal single-shaft self-cleaning stirring equipment: CN116078211A[P]. 2023-05-09. | |
20 | Arnaud D, Kunz A, Fleury P A. Devices for carrying out mechanical, chemical and/or thermal processes: US9126158[P]. 2015-09-08. |
21 | Palmer D. Mixing kneader: US6039469[P]. 2000-03-21. |
22 | Dotsch W, Schwenk W, Kunz A. Mixing kneader with rotating shafts and kneading bars: US5407266[P]. 1995-04-18. |
23 | List H, Schwenk W, Kunz A. Multi-spindle kneading mixer with fixed kneading counterelements: US4941130[P]. 1990-07-10. |
24 | List H. Multi-spindle kneading mixer: US4950081[P]. 1990-08-21. |
25 | List H. Multiple-spindle mixing kneader apparatus: US3689035[P]. 1972-09-05. |
26 | Schuchardt H. Mixing apparatus: US6260995[P]. 2001-07-17. |
27 | Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and cohesive mixing materials: US5876115[P]. 1999-03-02. |
28 | Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and solids-bearing materials to be mixed: US5658075[P]. 1997-08-19. |
29 | Schebesta K, Schuchardt H, Ullrich M. Completely self-cleaning mixer/reactor: US5669710[P]. 1997-09-23. |
30 | Schuchardt H. Multiple shaft mixing device providing full kinematic self-cleaning: US5505536[P]. 1996-04-09. |
31 | Schuchardt H, Ullrich M. Fully self-cleaning reactor/mixer with a large usable volume: US5399012[P]. 1995-03-21. |
32 | Schuchardt H, Ullrich M. Self-cleaning reactor/mixer with large useful volume: US5334358[P]. 1994-08-02. |
33 | 叶阳, 王嘉骏, 成文凯, 等. 一种搅拌装置和一种卧式双轴自清洁反应器: CN108236910B[P]. 2020-04-10. |
Ye Y, Wang J J, Cheng W K, et al. Stirring device and horizontal twin-shaft self-cleaning reactor: CN108236910B[P]. 2020-04-10. | |
34 | 成文凯, 王嘉骏, 顾雪萍, 等. 一种用于聚酯终缩聚的卧式双轴自清洁搅拌设备: CN114272789A[P]. 2022-04-05. |
Cheng W K, Wang J J, Gu X P, et al. Horizontal twin-shaft self-cleaning stirring equipment for polyester final polycondensation: CN114272789A[P]. 2022-04-05. | |
35 | 成文凯. 一种卧式双轴自清洁搅拌设备: CN116078257A[P]. 2023-05-09. |
Cheng W K. Horizontal twin-shaft self-cleaning stirring equipment: CN116078257A[P]. 2023-05-09. | |
36 | 时振方, 蔡子琦, 石代嗯, 等. 一种具有三轴转子的聚合物脱挥装置: CN217856168U[P]. 2022-11-22. |
Shi Z F, Cai Z Q, Shi D E, et al. Polymer devolatilization device with three-shaft rotor: CN217856168U[P]. 2022-11-22. | |
37 | 马宏, 房宾, 孙德超, 等. 一种新型三轴连续聚合反应脱挥挤出机: CN114454459A[P]. 2022-05-10. |
Ma H, Fang B, Sun D C, et al. Novel three-shaft continuous polymerization reaction devolatilization extruder: CN114454459A[P]. 2022-05-10. | |
38 | 刘荣. 新型卧式搅拌装置特性研究与设计开发[D]. 天津: 天津大学, 2009. |
Liu R. Study on the features of horizontal stirring devices and design process[D]. Tianjin: Tianjin University, 2009. | |
39 | 单纯. 卧式单轴自清洁搅拌釜数值模拟[D]. 天津: 天津大学, 2013. |
Shan C. Numerical simulation of horizontal agitated tank with the function of self-cleaning[D]. Tianjin: Tianjin University, 2013. | |
40 | 罗彬彬. 卧式单轴自清洁搅拌釜气液分层流和传热过程数值研究[D]. 天津: 天津大学, 2017. |
Luo B B. Numerical study of gas-liquid stratified flow and heat transfer in horizontal self-cleaning single-shaft stirred tank[D]. Tianjin: Tianjin University, 2017. | |
41 | 杨腾. D-T型卧式双轴搅拌装置的数值模拟[D]. 天津: 天津大学, 2010. |
Yang T. Numerical simulation of D-T model horizontal biaxial agitated tank[D]. Tianjin: Tianjin University, 2010. | |
42 | 刘叶凤. 卧式双轴搅拌釜数值模拟与实验研究[D]. 天津: 天津大学, 2013. |
Liu Y F. Numerical simulation and experimental study of horizontal twin-shaft stirred tank[D]. Tianjin: Tianjin University, 2013. | |
43 | 付正强. 卧式双轴搅拌釜内固液两相流的数值模拟与实验研究[D]. 天津: 天津大学, 2014. |
Fu Z Q. Numerical simulation and experimental study of solid-liquid two-phase flow in horizontal biaxial stirred tank[D]. Tianjin: Tianjin University, 2014. | |
44 | 成文凯, 张先明, 王嘉骏, 等. 卧式单轴捏合反应器流动与混合特性的数值模拟[J]. 化工学报, 2022, 73(5): 1995-2007. |
Cheng W K, Zhang X M, Wang J J, et al. Numerical simulation of hydrodynamics and mixing characteristics in a horizontal single-shaft kneader[J]. CIESC Journal, 2022, 73(5): 1995-2007. | |
45 | Cheng W K. CFD simulation on flow and mixing process in different horizontal self-cleaning single-shaft kneaders[J]. Chemical Engineering Journal Advances, 2023, 14: 100480. |
46 | Cheng W K, Ye Y, Jiang S X, et al. Mixing intensification in a horizontal self-cleaning twin-shaft kneader with a highly viscous Newtonian fluid[J]. Chemical Engineering Science, 2019, 201: 437-447. |
47 | Cheng W K, Xin S C, Chen S C, et al. Hydrodynamics and mixing process in a horizontal self-cleaning opposite-rotating twin-shaft kneader[J]. Chemical Engineering Science, 2021, 241: 116700. |
48 | 成文凯, 张先明, 王嘉骏, 等. 反向旋转卧式双轴捏合反应器混合特性的数值模拟[J]. 化工学报, 2022, 73(1): 162-174. |
Cheng W K, Zhang X M, Wang J J, et al. Numerical simulation of mixing process in different opposite-rotating horizontal twin-shaft kneaders[J]. CIESC Journal, 2022, 73(1): 162-174. | |
49 | Cheng W K. Comparison of mixing mechanism under different rotating directions in a horizontal self-cleaning differential rotating twin-shaft kneader[J]. Chemical Engineering Journal Advances, 2023, 14: 100462. |
50 | 王迪. 高黏卧式双轴反应器流体力学特征的研究[D]. 北京: 北京化工大学, 2021. |
Wang D. Study on hydrodynamic characteristics of high viscosity horizontal double-shaft devotilization reactor[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
51 | Cheng W K, Wang J J, Gu X P, et al. Film formation and mass transfer characteristics in a horizontal self-cleaning twin-shaft kneader with highly viscous Newtonian fluids[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1405-1411. |
52 | 叶阳. 新型卧式双轴反应器的CFD模拟与传质研究[D]. 杭州: 浙江大学, 2019. |
Ye Y. CFD simulation and mass transfer study of a novel horizontal twin-shaft reactor[D]. Hangzhou: Zhejiang University, 2019. | |
53 | 安澍. 卧式双轴捏合反应器成膜特性及混合特性CFD模拟研究[D]. 杭州: 浙江大学, 2023. |
An S. CFD simulation study on film-forming characteristics and mixing characteristics of horizontal biaxial kneading reactor[D]. Hangzhou: Zhejiang University, 2023. | |
54 | An S, Liao Z W, Hong X D, et al. Hydrodynamics and film formation characteristics in a horizontal self-cleaning twin-shaft kneader for polymer devolatilization[J]. Journal of Applied Polymer Science, 2023, 140(4): e53350. |
55 | 赵轶, 冯连芳, 顾雪萍, 等. 卧式双轴T型搅拌器在牛顿流体中的功率消耗[J]. 化学工程, 2000, 28(4): 32-35, 3. |
Zhao Y, Feng L F, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitator in Newtonian fluid[J]. Chemical Engineering (China), 2000, 28(4): 32-35, 3. | |
56 | 冯连芳, 赵轶, 顾雪萍, 等. 卧式双轴T型搅拌器在非牛顿流体中的搅拌功率特性[J]. 化学反应工程与工艺, 2000, 16(4): 331-336. |
Feng L F, Zhao Y, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitators in the non-Newtonian fluid[J]. Chemical Reaction Engineering and Technology, 2000, 16(4): 331-336. | |
57 | Seck O, Maxisch T, Warnecke H J, et al. Investigation of the mixing- and devolatilization behavior in a continuous twin-shaft kneader[J]. Macromolecular Symposia, 2010, 289(1): 155-164. |
58 | 殷宏鸣. 丙交酯开环聚合制备高分子量聚乳酸: 聚合工艺研究及新型复合催化剂的研发[D]. 扬州: 扬州大学, 2023. |
Yin H M. Preparation of high molecular weight polylactic acid by ring-opening polymerization of lactide-research on polymerization process and development of new composite catalyst[D]. Yangzhou: Yangzhou University, 2023. | |
59 | Safrit B T, Schlager G. Modeling and simulation of polymerization of lactide to polylactic acid and copolymers of polylactic acid using high viscosity kneader reactors[C]//71st Annual Technical Conference of the Society of Plastics Engineers. 2013. |
60 | 刘文静, 乐天俊, 任伟民. 氮丙啶衍生物与环状酸酐共聚合成聚酯酰胺[J]. 高分子学报, 2021, 52(7): 717-722. |
Liu W J, Le T J, Ren W M. Copolymerization of aziridine derivatives and cyclic anhydrides to form poly(ester amide)[J]. Acta Polymerica Sinica, 2021, 52(7): 717-722. | |
61 | 高晗, 徐军, 胡欣, 等. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645. |
Gao H, Xu J, Hu X, et al. Synthesis of poly(ester amide)[J]. Progress in Chemistry, 2018, 30(11): 1634-1645. | |
62 | Blanchard L, Rader C, Vanoli E, et al. Melt polycondensation for the synthesis of polyester amides using kneader reactor technology[J]. Chimia, 2020, 74(12): 1024-1025. |
63 | 谢鸿洲, 吴林波, 李伯耿. 生物基聚酯: 聚(2,5-呋喃二甲酸乙二醇酯)合成与改性的研究进展[J]. 生物加工过程, 2019, 17(5): 449-459. |
Xie H Z, Wu L B, Li B G. Progress in the synthesis and modification of bio-based poly (ethylene 2,5-furandicarboxylate)[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(5): 449-459. | |
64 | 周俏, 王昊楠, 史亚飞, 等. 生物基聚酯PEF的研究进展[J]. 工程塑料应用, 2023, 51(1): 140-146, 151. |
Zhou Q, Wang H N, Shi Y F, et al. Research progress of bio-based polyester PEF[J]. Engineering Plastics Application, 2023, 51(1): 140-146, 151. | |
65 | 武佳佳. PEF的流变特性及小分子在PEF基体中的扩散和溶解行为[D]. 杭州: 浙江大学, 2022. |
Wu J J. Rheological properties of poly(ethylene 2,5-furandicarboxylate) (PEF) and diffusion/sorption behavior of small molecules in PEF[D]. Hangzhou: Zhejing University, 2022. | |
66 | Yu S, Lee J C, Ahn S, et al. Synthesis of bio-based poly(ethylene 2,5-furandicarboxylate) in a kneader reactor and its melt spinning[J]. Polymer Korea, 2020, 44(5): 695-700. |
67 | 曹湘洪, 张爱民. 溶液聚合合成橡胶节能技术和节能型橡胶的开发[J]. 中国工程科学, 2001, 3(7): 59-63, 69. |
Cao X H, Zhang A M. The energy-saving technology for solution polymerization of synthetic rubber and the development of energy-saving rubber[J]. Engineering Science, 2001, 3(7): 59-63, 69. | |
68 | 崔华, 赵秀红, 金永峰, 等. 乙丙橡胶湿法脱挥工艺研究[J]. 化工科技, 2010, 18(1): 56-59. |
Cui H, Zhao X H, Jin Y F, et al. Study on wet devolatilization technology of EPR[J]. Science & Technology in Chemical Industry, 2010, 18(1): 56-59. | |
69 | 陈力军, 罗军, 侯志强. 三釜凝聚工艺在顺丁橡胶生产中的应用[J]. 合成橡胶工业, 2013, 36(1): 7-11. |
Chen L J, Luo J, Hou Z Q. Application of three-kettle coagulating process in production of cis-1,4-polybutadiene rubber[J]. China Synthetic Rubber Industry, 2013, 36(1): 7-11. | |
70 | 罗军, 张兰波. 三釜凝聚工艺在异戊橡胶生产中的应用[J]. 合成橡胶工业, 2015, 38(6): 418-421. |
Luo J, Zhang L B. Application of three-kettle coagulation process in isoprene rubber production[J]. China Synthetic Rubber Industry, 2015, 38(6): 418-421. | |
71 | 梁爱民. 热塑性弹性体SBS的生产技术现状和发展趋势[J]. 现代化工, 2003, 23(7): 10-14. |
Liang A M. Production technology and development trend of SBS thermoplastic elastomer[J]. Modern Chemical Industry, 2003, 23(7): 10-14. | |
72 | Safrit B T, Diener A E. Kneader technology for the direct devolatilization of temperature sensitive elastomers[C]//Society of Plastics Engineers Annual Technical Conference. 2008. |
73 | 谭皓. 活性阴离子聚合制备尼龙6及其纺丝研究[D]. 杭州: 浙江大学, 2022. |
Tan H. Preparation of polyamide 6 by the living anionic polymerization method and its spinning[D]. Hangzhou: Zhejiang University, 2022. | |
74 | 秦春曦. 尼龙6萃取过程新装备和新工艺[D]. 上海: 华东理工大学, 2018. |
Qin C X. New apparatus and new process for Nylon 6 solid-liquid extraction unit[D]. Shanghai: East China University of Science and Technology, 2018. | |
75 | 罗慧如. 活性阴离子聚合制备PA6纤维及其原位增强改性[D]. 杭州: 浙江大学, 2016. |
Luo H R. Preparation of PA6 fiber by the activated anionic polymerization method and its in-situ reinforced modification[D]. Hangzhou: Zhejiang University, 2016. | |
76 | 刘迪, 李德和. 300 t/d聚酰胺6聚合成套设备及工艺技术特点[J]. 合成纤维工业, 2016, 39(1): 58-61. |
Liu D, Li D H. Technological features of 300 t/d polyamide 6 polymerization complete equipment and process[J]. China Synthetic Fiber Industry, 2016, 39(1): 58-61. | |
77 | 王晨. 尼龙6生产过程流程模拟与分析[D]. 上海: 华东理工大学, 2015 |
Wang C. Process simulation and analysis of Nylon 6 manufacture process[D]. Shanghai: East China University of Science and Technology, 2015. | |
78 | Henkel J, Diener A, 王胜东. 熔融相PA6的后缩聚反应[J]. 国际纺织导报, 2002, 30(S2): 15-16. |
Henkel J, Diener A, Wang S D. Post-polycondensation of molten phase PA6[J]. Melliand China, 2002, 30(S2): 15-16. |
[1] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of reactors for liquid-liquid heterogeneous system [J]. CIESC Journal, 2024, 75(3): 727-742. |
[2] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[3] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[4] | Xiaobin ZHAN, Huibin WANG, Yalong JIANG, Tielin SHI. Research on power consumption characteristics of high viscosity fluid mixing in acoustic resonance mixer [J]. CIESC Journal, 2024, 75(2): 531-542. |
[5] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[6] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[9] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[10] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[13] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||