CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 867-876.DOI: 10.11949/0438-1157.20240059
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Rao CHEN1,2(), Xin ZHAO3(
), Daixin CHEN1, Shengkun JIANG3, Yingjiang LIAN1, Jinbo WANG3, Mei YANG1, Guangwen CHEN1,2(
)
Received:
2024-01-12
Revised:
2024-02-08
Online:
2024-05-11
Published:
2024-03-25
Contact:
Xin ZHAO, Guangwen CHEN
陈饶1,2(), 赵鑫3(
), 陈戴欣1, 姜圣坤3, 廉应江1, 王金波3, 杨梅1, 陈光文1,2(
)
通讯作者:
赵鑫,陈光文
作者简介:
陈饶(1998—),男,博士研究生,chenrao@dicp.ac.cn
基金资助:
CLC Number:
Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor[J]. CIESC Journal, 2024, 75(3): 867-876.
陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876.
Item | Quality index | |
---|---|---|
Premium grade | First-grade | |
appearance | no black impurities or suspended solids | |
2,4+2,6-DNT/% | ≥95.0 | ≥95.0 |
2,4-/2,6-DNT | 3.76~4.26 | 3.65~4.41 |
2,5+3,5-DNT/% | ≤1.0 | ≤1.0 |
2,3+3,4-DNT/% | ≤4.0 | ≤4.5 |
MNT/% | ≤0.2 | ≤0.2 |
TNT/% | ≤0.1 | ≤0.1 |
nitrocresol/% | ≤0.15 | ≤0.15 |
Table 1 Main technical indicators of 80/20DNT product quality standards
Item | Quality index | |
---|---|---|
Premium grade | First-grade | |
appearance | no black impurities or suspended solids | |
2,4+2,6-DNT/% | ≥95.0 | ≥95.0 |
2,4-/2,6-DNT | 3.76~4.26 | 3.65~4.41 |
2,5+3,5-DNT/% | ≤1.0 | ≤1.0 |
2,3+3,4-DNT/% | ≤4.0 | ≤4.5 |
MNT/% | ≤0.2 | ≤0.2 |
TNT/% | ≤0.1 | ≤0.1 |
nitrocresol/% | ≤0.15 | ≤0.15 |
φ/% | Qorg/(ml/min) | N/S | N/T | T/℃ | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1/1 | 2.10 | 75 | 6.03 | 0 | 5.73 | 94.17 | 89.30 | 4.48 | 4.87 |
5 | 0.77 | 99.23 | 94.15 | 4.52 | 5.08 |
Table 2 Effect of kettle stirring on the dinitration reaction of toluene
φ/% | Qorg/(ml/min) | N/S | N/T | T/℃ | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1/1 | 2.10 | 75 | 6.03 | 0 | 5.73 | 94.17 | 89.30 | 4.48 | 4.87 |
5 | 0.77 | 99.23 | 94.15 | 4.52 | 5.08 |
φ/% | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
7 | 2.07 | 4.5 | 0 | 0.96 | 98.86 | 94.78 | 4.47 | 4.08 |
2.18 | 4.4 | 0 | 0.10 | 99.74 | 95.59 | 4.50 | 4.14 | |
2.26 | 4.3 | 0 | 0.03 | 99.82 | 95.68 | 4.49 | 4.14 | |
2.07 | 4.5 | 5 | 0.10 | 99.73 | 95.57 | 4.49 | 4.16 | |
2.18 | 4.4 | 5 | 0 | 99.85 | 95.68 | 4.50 | 4.17 | |
2.26 | 4.3 | 5 | 0 | 99.83 | 95.67 | 4.50 | 4.17 | |
10 | 2.05 | 4.3 | 0 | 9.83 | 90.15 | 86.89 | 4.27 | 3.26 |
2.26 | 4.1 | 0 | 2.03 | 97.96 | 94.30 | 4.35 | 3.66 | |
2.05 | 4.3 | 5 | 6.71 | 93.26 | 89.89 | 4.26 | 3.38 | |
2.26 | 4.1 | 5 | 0 | 99.98 | 96.14 | 4.38 | 3.84 | |
12 | 2.09 | 4.7 | 0 | 21.02 | 78.92 | 76.46 | 4.07 | 2.46 |
2.17 | 4.5 | 0 | 16.68 | 83.31 | 80.60 | 4.12 | 2.71 | |
2.25 | 4.3 | 0 | 10.31 | 89.69 | 86.73 | 4.17 | 2.96 | |
2.09 | 4.7 | 5 | 7.76 | 92.02 | 89.08 | 4.11 | 2.94 | |
2.17 | 4.5 | 5 | 3.62 | 96.38 | 93.17 | 4.20 | 3.21 | |
2.25 | 4.3 | 5 | 1.31 | 98.69 | 95.31 | 4.26 | 3.38 | |
14 | 2.08 | 4.5 | 0 | 38.66 | 61.33 | 59.52 | 3.95 | 1.81 |
2.16 | 4.4 | 0 | 38.85 | 61.15 | 59.33 | 3.95 | 1.82 | |
2.26 | 4.3 | 0 | 34.80 | 65.20 | 63.23 | 3.97 | 1.96 | |
2.08 | 4.5 | 5 | 22.22 | 77.78 | 75.49 | 3.90 | 2.29 | |
2.16 | 4.4 | 5 | 19.14 | 80.86 | 78.45 | 3.92 | 2.40 | |
2.26 | 4.3 | 5 | 15.25 | 84.75 | 82.15 | 4.01 | 2.60 |
Table 3 Effect of the molar ratio of nitric acid to toluene on the process of toluene dinitration reaction (N/S=1/2, T=75℃)
φ/% | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
7 | 2.07 | 4.5 | 0 | 0.96 | 98.86 | 94.78 | 4.47 | 4.08 |
2.18 | 4.4 | 0 | 0.10 | 99.74 | 95.59 | 4.50 | 4.14 | |
2.26 | 4.3 | 0 | 0.03 | 99.82 | 95.68 | 4.49 | 4.14 | |
2.07 | 4.5 | 5 | 0.10 | 99.73 | 95.57 | 4.49 | 4.16 | |
2.18 | 4.4 | 5 | 0 | 99.85 | 95.68 | 4.50 | 4.17 | |
2.26 | 4.3 | 5 | 0 | 99.83 | 95.67 | 4.50 | 4.17 | |
10 | 2.05 | 4.3 | 0 | 9.83 | 90.15 | 86.89 | 4.27 | 3.26 |
2.26 | 4.1 | 0 | 2.03 | 97.96 | 94.30 | 4.35 | 3.66 | |
2.05 | 4.3 | 5 | 6.71 | 93.26 | 89.89 | 4.26 | 3.38 | |
2.26 | 4.1 | 5 | 0 | 99.98 | 96.14 | 4.38 | 3.84 | |
12 | 2.09 | 4.7 | 0 | 21.02 | 78.92 | 76.46 | 4.07 | 2.46 |
2.17 | 4.5 | 0 | 16.68 | 83.31 | 80.60 | 4.12 | 2.71 | |
2.25 | 4.3 | 0 | 10.31 | 89.69 | 86.73 | 4.17 | 2.96 | |
2.09 | 4.7 | 5 | 7.76 | 92.02 | 89.08 | 4.11 | 2.94 | |
2.17 | 4.5 | 5 | 3.62 | 96.38 | 93.17 | 4.20 | 3.21 | |
2.25 | 4.3 | 5 | 1.31 | 98.69 | 95.31 | 4.26 | 3.38 | |
14 | 2.08 | 4.5 | 0 | 38.66 | 61.33 | 59.52 | 3.95 | 1.81 |
2.16 | 4.4 | 0 | 38.85 | 61.15 | 59.33 | 3.95 | 1.82 | |
2.26 | 4.3 | 0 | 34.80 | 65.20 | 63.23 | 3.97 | 1.96 | |
2.08 | 4.5 | 5 | 22.22 | 77.78 | 75.49 | 3.90 | 2.29 | |
2.16 | 4.4 | 5 | 19.14 | 80.86 | 78.45 | 3.92 | 2.40 | |
2.26 | 4.3 | 5 | 15.25 | 84.75 | 82.15 | 4.01 | 2.60 |
N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
1∶3 | 2.05 | 4.8 | 0 | 14.96 | 85.03 | 82.22 | 4.13 | 2.81 |
2.17 | 4.6 | 0 | 11.99 | 88.01 | 85.06 | 4.17 | 2.95 | |
2.23 | 4.5 | 0 | 8.86 | 91.14 | 88.03 | 4.17 | 3.11 | |
2.05 | 4.8 | 5 | 1.42 | 98.58 | 95.17 | 4.22 | 3.42 | |
2.17 | 4.6 | 5 | 0.68 | 99.31 | 95.79 | 4.23 | 3.52 | |
2.23 | 4.5 | 5 | 0.19 | 99.79 | 96.25 | 4.25 | 3.55 | |
1∶4 | 2.05 | 4.9 | 0 | 8.50 | 91.47 | 88.56 | 4.26 | 2.92 |
2.17 | 4.7 | 0 | 5.64 | 94.35 | 91.16 | 4.22 | 3.19 | |
2.23 | 4.5 | 0 | 2.57 | 97.41 | 93.94 | 4.19 | 3.47 | |
2.05 | 4.9 | 5 | 2.56 | 97.42 | 94.12 | 4.21 | 3.30 | |
2.17 | 4.7 | 5 | 0.05 | 99.93 | 96.29 | 4.20 | 3.65 | |
2.23 | 4.5 | 5 | 0.0 | 99.99 | 96.43 | 4.25 | 3.57 |
Table 4 Effect of the molar ratio of nitric acid to toluene on the process of toluene dinitration reaction (φ=14%, T=75℃)
N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
1∶3 | 2.05 | 4.8 | 0 | 14.96 | 85.03 | 82.22 | 4.13 | 2.81 |
2.17 | 4.6 | 0 | 11.99 | 88.01 | 85.06 | 4.17 | 2.95 | |
2.23 | 4.5 | 0 | 8.86 | 91.14 | 88.03 | 4.17 | 3.11 | |
2.05 | 4.8 | 5 | 1.42 | 98.58 | 95.17 | 4.22 | 3.42 | |
2.17 | 4.6 | 5 | 0.68 | 99.31 | 95.79 | 4.23 | 3.52 | |
2.23 | 4.5 | 5 | 0.19 | 99.79 | 96.25 | 4.25 | 3.55 | |
1∶4 | 2.05 | 4.9 | 0 | 8.50 | 91.47 | 88.56 | 4.26 | 2.92 |
2.17 | 4.7 | 0 | 5.64 | 94.35 | 91.16 | 4.22 | 3.19 | |
2.23 | 4.5 | 0 | 2.57 | 97.41 | 93.94 | 4.19 | 3.47 | |
2.05 | 4.9 | 5 | 2.56 | 97.42 | 94.12 | 4.21 | 3.30 | |
2.17 | 4.7 | 5 | 0.05 | 99.93 | 96.29 | 4.20 | 3.65 | |
2.23 | 4.5 | 5 | 0.0 | 99.99 | 96.43 | 4.25 | 3.57 |
φ/% | N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|
14 | 1/4 | 2.17 | 4.7 | 0 | 3.72 | 95.88 | 92.55 | 4.16 | 3.33 |
2.17 | 4.7 | 10 | 0.16 | 99.61 | 96.08 | 4.21 | 3.53 |
Table 5 Experimental result of toluene adiabatic dinitration reaction(φ=14%, Qorg=3.5 ml/min, Qaq=28.5 ml/min, N/S=1/4, feed at room temperature)
φ/% | N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|
14 | 1/4 | 2.17 | 4.7 | 0 | 3.72 | 95.88 | 92.55 | 4.16 | 3.33 |
2.17 | 4.7 | 10 | 0.16 | 99.61 | 96.08 | 4.21 | 3.53 |
1 | Auer E. Supported iridium catalysts—a novel catalytic system for the synthesis of toluenediamine[J]. Catalysis Today, 2001, 65(1): 31-37. |
2 | Neri G, Rizzo G, Milone C, et al. Microstructural characterization of doped-Pd/C catalysts for the selective hydrogenation of 2, 4-dinitrotoluene to arylhydroxylamines[J]. Applied Catalysis A: General, 2003, 249(2): 303-311. |
3 | Hajdu V, Varga M, Muránszky G, et al. Development of magnetic, ferrite supported palladium catalysts for 2, 4-dinitrotoluene hydrogenation[J]. Materials Today Chemistry, 2021, 20: 100470. |
4 | Hajdu V, Muránszky G, Hashimoto M, et al. Combustion method combined with sonochemical step for synthesis of maghemite-supported catalysts for the hydrogenation of 2, 4-dinitrotoluene[J]. Catalysis Communications, 2021, 159: 106342. |
5 | Jakab-Nácsa A, Garami A, Fiser B, et al. Towards machine learning in heterogeneous catalysis—a case study of 2,4-dinitrotoluene hydrogenation[J]. International Journal of Molecular Sciences, 2023, 24(14): 11461. |
6 | 陈利平, 陈网桦, 彭金华, 等. 二硝基甲苯硝化反应的热危险性分析[J]. 含能材料, 2010, 18(6): 706-710. |
Chen L P, Chen W H, Peng J H, et al. Thermal hazard analysis of dinitrotoluene nitration[J]. Chinese Journal of Energetic Materials, 2010, 18(6): 706-710. | |
7 | Kulkarni A A. Continuous flow nitration in miniaturized devices[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 405-424. |
8 | 汪嘉欣, 潘勇, 熊欣怡, 等. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
Wang J X, Pan Y, Xiong X Y, et al. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. | |
9 | Guggenheim T L. Chemistry, Process Design, and Safety for the Nitration Industry[M]. Washington DC: American chemical Society, 2013. |
10 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
11 | 陈光文, 赵玉潮, 袁权. 微尺度下液-液流动与传质特性的研究进展[J]. 化工学报, 2010, 61(7): 1627-1635. |
Chen G W, Zhao Y C, Yuan Q. Advances in flow hydrodynamic and mass transfer characteristics of liquid phase in microscale[J]. CIESC Journal, 2010, 61(7): 1627-1635. | |
12 | 骆广生, 王凯, 王玉军, 等. 微化工系统的原理和应用[J]. 化工进展, 2011, 30(8): 1637-1642. |
Luo G S, Wang K, Wang Y J, et al. Principles and applications of micro-structured chemical system[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1637-1642. | |
13 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Chen G W, Zhao Y C, Yue J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
14 | 骆广生, 王凯, 吕阳成, 等. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1): 165-172. |
Luo G S, Wang K, Lü Y C, et al. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1): 165-172. | |
15 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
16 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
Li G X, Liu S E, Su Y H. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. | |
17 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions[J]. Catalysis Today, 2003, 79/80: 433-439. |
18 | Su Y H, Zhao Y C, Jiao F J, et al. The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles[J]. AIChE Journal, 2011, 57(6): 1409-1418. |
19 | Yu Z Q, Zhou P C, Liu J M, et al. Continuous-flow process for selective mononitration of 1-methyl-4-(methylsulfonyl)benzene[J]. Organic Process Research & Development, 2016, 20(2): 199-203. |
20 | Yan Z F, Tian J X, Du C C, et al. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41: 49-72. |
21 | 刘卫孝, 刘洋, 高福磊, 等. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
Liu W X, Liu Y, Gao F L, et al. Application of microreactor in synthesis and quality improvement of energetic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. | |
22 | Jin N, Song Y B, Yue J, et al. Heterogeneous nitration of nitrobenzene in microreactors: process optimization and modelling[J]. Chemical Engineering Science, 2023, 281: 119198. |
23 | Guo S, Zhan L W, Li B D. Nitration of o-xylene in the microreactor: reaction kinetics and process intensification[J]. Chemical Engineering Journal, 2023, 468: 143468. |
24 | Wen Z H, Jiao F J, Yang M, et al. Process development and scale-up of the continuous flow nitration of trifluoromethoxybenzene[J]. Organic Process Research & Development, 2017, 21(11): 1843-1850. |
25 | Russo D, Tomaiuolo G, Andreozzi R, et al. Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor[J]. Chemical Engineering Journal, 2019, 377: 120346. |
26 | Hussain A, Sharma M, Patil S, et al. Design and scale-up of continuous di-nitration reaction using pinched tube flow reactor[J]. Journal of Flow Chemistry, 2021, 11(3): 611-624. |
27 | 侯跃辉, 刘璇, 廉应江, 等. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
Hou Y H, Liu X, Lian Y J, et al. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor[J]. CIESC Journal, 2022, 73(8): 3597-3607. | |
28 | Hou Z T, Chen H F, Mao J Y, et al. Novel atomization-assisted phosgenation for TDI synthesis from TDA: a theoretical study on single droplet reactivity[J]. Chemical Engineering Science, 2023, 280: 119018. |
29 | Zaldivar J M, Molga E, Alós M A, et al. Aromatic nitrations by mixed acid. Slow liquid-liquid reaction regime[J]. Chemical Engineering and Processing: Process Intensification, 1995, 34(6): 543-559. |
30 | Russo D, Marotta R, Commodo M, et al. Ternary HNO3-H2SO4-H2O mixtures: a simplified approach for the calculation of the equilibrium composition[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1696-1704. |
31 | Li S F, Zhang X L, Ji D S, et al. Continuous flow nitration of 3-[2-chloro-4-(trifluoromethyl) phenoxy]benzoic acid and its chemical kinetics within droplet-based microreactors[J]. Chemical Engineering Science, 2022, 255: 117657. |
[1] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[2] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of reactors for liquid-liquid heterogeneous system [J]. CIESC Journal, 2024, 75(3): 727-742. |
[3] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[4] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[5] | Ting WANG, Zhongdong WANG, Xingyu XIANG, Chengxiang HE, Chunying ZHU, Youguang MA, Taotao FU. Advances in synthesis of cyclic ester additives for lithium batteries in microreactors [J]. CIESC Journal, 2024, 75(1): 95-109. |
[6] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[7] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[8] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[9] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[10] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[11] | Weigu WEN, Zhihong YUAN, Kai WANG, Guangsheng LUO. Microdispersion droplet optical fiber detection [J]. CIESC Journal, 2024, 75(1): 211-220. |
[12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[13] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 913
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 272
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||