1 |
冯向港, 葛奋飞, 张印民, 等.煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术, 2023, 29(11): 122-132
|
|
Feng X G, Ge F F, Zhang Y M, et al. Research progress and application prospects of high-value utilization of coal gasification slag[J]. Clean coal technology, 2023, 29(11): 122-132.
|
2 |
张瑞梅, 刘定桦, 何浩, 等. 煤气化细渣综合利用与碳灰分离技术现状[J]. 煤炭工程, 2023, 55(5): 175-182.
|
|
Zhang R M, Liu D H, He H, et al. Comprehensive utilization of coal gasification fine slag and carbon ash separation technology[J]. Coal Engineering, 2023, 55(5): 175-182.
|
3 |
胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.
|
|
Hu W H. Basic study on activation separation and resource utilization of Al-Si components in coal gasification residue[D].Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019.
|
4 |
Liu X D, Jin Z W, Jing Y H, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106.
|
5 |
Yuan N, Zhao A J, Hu Z K, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review[J]. Chemosphere, 2022, 287(Pt 2): 132227.
|
6 |
郭航昊, 王冀, 马志斌, 等. 煤气化渣玻璃体组成和含量对其碱激发反应活性的影响[J]. 洁净煤技术, 2023, 29(7): 87-94.
|
|
Guo H H, Wang J, Ma Z B, et al. Influence mechanism of composition and content of glassy phase on cementitious reactivity of coal gasification slag[J]. Clean Coal Technology, 2023, 29(7): 87-94.
|
7 |
Wu Y H, Ma Y L, Sun Y G, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186.
|
8 |
朱丹丹. 煤气化细渣在土壤改良及水污染治理中的资源化利用研究[D]. 长春: 吉林大学, 2021.
|
|
Zhu D D. Study on the utilization of coal gasification fine slag in soil improvement and water pollution control[D]. Changchun: Jilin University, 2021.
|
9 |
刘硕. 煤气化细渣制备介孔材料及净水剂研究[D]. 长春: 吉林大学, 2019.
|
|
Liu S. Study on preparation of mesoporous materials and water purifying agent from coal gasification fine slag[D].Changchun: Jilin University, 2019.
|
10 |
Guo F H, Miao Z K, Guo Z K, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043.
|
11 |
Zhan S H, Zhang H X, Mi X Y, et al. Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides[J]. Environmental Science & Technology, 2020, 54(13): 8333-8343.
|
12 |
Kim H S, Jang A, Choi S Y, et al. Vacancy-induced electronic structure variation of acceptors and correlation with proton conduction in perovskite oxides[J]. Angewandte Chemie International Edition, 2016, 55(43): 13499-13503.
|
13 |
Gao S T, Zhang Y C, Li H X, et al. The microwave absorption properties of residual carbon from coal gasification fine slag[J]. Fuel, 2021, 290: 120050.
|
14 |
Yang L, Wang F Z, Hakki A, et al. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance[J]. Applied Surface Science, 2017, 392: 687-696.
|
15 |
Zhu D D, Shi L N, Li H M, et al. Study of the synthesis, adsorption property, and photocatalytic activity of TiO2/coal gasification fine slag mesoporous silica glass microsphere composite[J]. Environmental Science and Pollution Research, 2023, 30(4): 9416-9427.
|
16 |
Long Y H, Yang P Z, Wang C Y, et al. Peroxymonosulfate activation by iron-carbon composite derived from coal gasification slag for sulfamethoxazole removal: performance evaluation and mechanism insight[J]. Chemical Engineering Journal, 2023, 456: 140996.
|
17 |
焦昭杰, 陈立功, 柳云骐, 等. CuCe氧化物催化剂的制备及CWPO降解双酚A废水研究[J]. 化工学报, 2020, 71(4): 1646-1656.
|
|
Jiao Z J, Chen L G, Liu Y Q, et al. Preparation of CuCe oxide catalyst for CWPO degradation of bisphenol A[J]. CIESC Journal, 2020, 71(4): 1646-1656.
|
18 |
尹周澜, 高孝恢, 邹祖荣. 硅酸盐中金属离子对Si—O键影响的量子化学研究[J]. 矿物学报, 1990, 10(4): 348-355.
|
|
Yin Z L, Gao X H, Zou Z R. Quantum chemistry research on the effect of metallic cations on Si—O bonds in silicates[J]. Acta Mineralogica Sinica, 1990, 10(4): 348-355.
|
19 |
林凤飞. 氯化锌活化梧桐基碳材料的制备及亚甲基蓝吸附性能研究[D]. 合肥: 合肥工业大学, 2022.
|
|
Lin F F. Study on preparation and adsorption properties of methylene blue of Chinese parasol based carbon materials activated by zinc chloride[D]. Hefei: Hefei University of Technology, 2022.
|
20 |
Wang Y L, Han X N, Cui S P, et al. Study on the mechanism of iron-rich coal gasification slag on NO conversion in high temperature flue gas of cement kiln[J]. Fuel, 2023, 332: 126254.
|
21 |
Liu S, Chen X T, Ai W D, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071.
|
22 |
刘雪梅, 赵蓓. 氯化锌造孔甘蔗渣制备的生物炭对废水中Cr(Ⅵ)的吸附研究[J]. 应用化工, 2019, 48(6): 1354-1358, 1362.
|
|
Liu X M, Zhao B. Adsorption of Cr(Ⅵ) in wastewater by biochar prepared from zinc chloride modified bagasse[J]. Applied Chemical Industry, 2019, 48(6): 1354-1358, 1362.
|
23 |
舒锐, 郭飞强, 白家明, 等. 煤气化细渣高温碱活化制备高性能孔雀石绿吸附材料的研究[J]. 煤炭转化, 2022, 45(5): 63-71.
|
|
Shu R, Guo F Q, Bai J M, et al. Study on preparation of high-performance adsorption material for malachite green by high-temperature alkali activation of coal gasification fine slag[J]. Coal Conversion, 2022, 45(5): 63-71.
|
24 |
吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
|
|
Lyu L, Hu C. Heterogeneous Fenton catalytic water treatment technology and mechanism[J]. Progress in Chemistry, 2017, 29(9): 981-999.
|
25 |
尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(4): 30-33.
|
|
Yin H F, Tang Y, Ren Y, et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion, 2009, 32(4): 30-33.
|
26 |
Ai W D, Zhang J P, Zhang J Y, et al. Mechanical properties and morphology of coal gasification fine slag glass bead-filled acrylonitrile–butadiene–styrene (ABS) composites[J]. Journal of Applied Polymer Science, 2020, 137(17): 1-9.
|
27 |
Zhuang S T, Wang J L. Magnetic COFs as catalyst for Fenton-like degradation of sulfamethazine[J]. Chemosphere, 2021, 264(Pt 2): 128561.
|
28 |
Minaei S, Zoroufchi Benis K, McPhedran K N, et al. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole[J]. Chemical Engineering Research and Design, 2023, 190: 407-420.
|
29 |
苗泽凯. 煤气化细渣中残炭/矿物质协同构筑分级孔材料及捕集CO2研究[D]. 徐州: 中国矿业大学, 2022.
|
|
Miao Z K. Study on synergistic synthesis hierarchical porous materials from residual carbon/minerals in coal gasification fine slag and CO2 capture[D]. Xuzhou: China University of Mining and Technology, 2022.
|
30 |
Cherono F, Mburu N, Kakoi B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber[J]. Heliyon, 2021, 7(11): e08254.
|
31 |
Ren L, Ding L, Guo Q H, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: a comprehensive review[J]. Journal of Cleaner Production, 2023, 398: 136554.
|
32 |
Zhu D D, Zuo J, Jiang Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. The Science of the Total Environment, 2020, 707: 136102.
|
33 |
于晓彬. 微气泡强化碱介质中活性氧生成的基础研究[D]. 天津: 天津大学, 2017.
|
|
Yu X B. Fundamental study on reactive oxygen species generation of alkaline medium with microbubbles’ intensification[D]. Tianjin: Tianjin University, 2017.
|
34 |
Li X J, Liao F Z, Ye L M, et al. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism[J]. Journal of Hazardous Materials, 2020, 398: 122938.
|
35 |
Gao Y J, Chen Y, Song T H, et al. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: characteristics, influencing factors, reaction mechanism and reuse performance[J]. Separation and Purification Technology, 2022, 300: 121857.
|
36 |
Kakavandi B, Alavi S, Ghanbari F, et al. Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: performance, upgrading synergy and mechanistic pathway[J]. Chemosphere, 2022, 287: 132024.
|
37 |
Lin K Y A, Zhang Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327.
|
38 |
Deng J, Xu M Y, Qiu C G, et al. Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: performance, mechanism and application feasibility[J]. Applied Surface Science, 2018, 459: 138-147.
|
39 |
Fan X H, Lin H, Zhao J J, et al. Activation of peroxymonosulfate by sewage sludge biochar-based catalyst for efficient removal of bisphenol A: performance and mechanism[J]. Separation and Purification Technology, 2021, 272: 118909.
|
40 |
Wang, L H, Jiang, J P, Su Y Z, et al. Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide[J]. Chemical engineering journal, 2018, 352: 1004-1013.
|
41 |
Nie M H, Deng Y W, Nie S H, et al. Simultaneous removal of bisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide[J]. Chemical Engineering Journal, 2019, 369: 35-45.
|
42 |
Wang P P, Liu X L, Qiu W, et al. Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(Ⅲ)/Fe(Ⅱ) cycle confined in the nanoscale interlayer of Fe(Ⅲ)-saturated montmorillonite[J]. Water Research, 2020, 182: 116030.
|
43 |
Kong L S, Fang G D, Chen Y F, et al. Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: kinetics, performance and mechanism studies[J]. Applied Catalysis B: Environmental, 2019, 253: 278-285.
|