CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1890-1902.DOI: 10.11949/0438-1157.20240155
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xinxin XU(), Yunli JI, Xianfeng WU, Xia AN(), Xu WU
Received:
2024-02-01
Revised:
2024-03-29
Online:
2024-06-25
Published:
2024-05-25
Contact:
Xia AN
通讯作者:
安霞
作者简介:
徐欣欣(2000—),女,硕士研究生,2408795631@qq.com
基金资助:
CLC Number:
Xinxin XU, Yunli JI, Xianfeng WU, Xia AN, Xu WU. Hydrotalcite-derived CuMgFe-LDO catalyst for simultaneous abatement of nitrogen oxides and methanol[J]. CIESC Journal, 2024, 75(5): 1890-1902.
徐欣欣, 冀芸丽, 武鲜凤, 安霞, 吴旭. 水滑石衍生CuMgFe-LDO催化剂协同净化氮氧化物和甲醇[J]. 化工学报, 2024, 75(5): 1890-1902.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 NO x conversion, methanol conversion,N2 selectivity,CO2 selectivity over different catalysts [reaction conditions: 500 mg/L NO x, 500 mg/L NH3, 750 mg/L methanol, 5% O2 and N2 as balance, GHSV=30000 ml/(g·h)]
催化剂 | 比表面积/ (m2/g) | 孔径/nm | 孔容/(cm3/g) |
---|---|---|---|
MgFe-LDO | 62.6 | 8.8 | 0.2 |
Cu0.5MgFe-LDO | 38.1 | 16.4 | 0.2 |
Cu1MgFe-LDO | 31.8 | 11.8 | 0.1 |
Cu2.5MgFe-LDO | 19.7 | 22.6 | 0.1 |
Table 1 The specific surface area, pore diameter and pore volume of catalysts
催化剂 | 比表面积/ (m2/g) | 孔径/nm | 孔容/(cm3/g) |
---|---|---|---|
MgFe-LDO | 62.6 | 8.8 | 0.2 |
Cu0.5MgFe-LDO | 38.1 | 16.4 | 0.2 |
Cu1MgFe-LDO | 31.8 | 11.8 | 0.1 |
Cu2.5MgFe-LDO | 19.7 | 22.6 | 0.1 |
催化剂 | NH3相对 吸附量 | NH3脱附比例/% | |
---|---|---|---|
弱酸 | 强酸 | ||
MgFe-LDO | 1.0 | 100 | - |
Cu0.5MgFe-LDO | 0.7 | 30 | 70 |
Cu1MgFe-LDO | 0.6 | 34 | 66 |
Cu2.5MgFe-LDO | 0.2 | 96 | 4 |
Table 2 NH3 desorption results of catalysts
催化剂 | NH3相对 吸附量 | NH3脱附比例/% | |
---|---|---|---|
弱酸 | 强酸 | ||
MgFe-LDO | 1.0 | 100 | - |
Cu0.5MgFe-LDO | 0.7 | 30 | 70 |
Cu1MgFe-LDO | 0.6 | 34 | 66 |
Cu2.5MgFe-LDO | 0.2 | 96 | 4 |
催化剂 | 表面元素物种/% | 总氧物种脱附量 | ||
---|---|---|---|---|
Oɑ | Oβ | Oγ | ||
Mg3Fe1-LDO | 28.8 | 1.8 | 69.4 | 1 |
Cu0.5MgFe-LDO | 37.7 | 60.5 | 1.8 | 0.8 |
Cu1Mg2Fe1-LDO | 43.1 | 49.5 | 7.4 | 0.6 |
Cu2.5Mg0.5Fe1-LDO | 32.7 | 67.3 | — | 0.5 |
Table 3 Analysis of O2-TPD data for various catalysts
催化剂 | 表面元素物种/% | 总氧物种脱附量 | ||
---|---|---|---|---|
Oɑ | Oβ | Oγ | ||
Mg3Fe1-LDO | 28.8 | 1.8 | 69.4 | 1 |
Cu0.5MgFe-LDO | 37.7 | 60.5 | 1.8 | 0.8 |
Cu1Mg2Fe1-LDO | 43.1 | 49.5 | 7.4 | 0.6 |
Cu2.5Mg0.5Fe1-LDO | 32.7 | 67.3 | — | 0.5 |
催化剂 | 相对浓度比/% | ||
---|---|---|---|
Cu+/(Cu++Cu2+) | Fe3+/(Fe3++Fe2+) | Oβ/(Oα+Oβ) | |
MgFe-LDO | — | 40 | 58 |
Cu0.5MgFe-LDO | 51 | 61 | 71 |
Cu1MgFe-LDO | 56 | 59 | 51 |
Cu2.5MgFe-LDO | 65 | 58 | 50 |
Table 4 XPS analysis of different catalysts
催化剂 | 相对浓度比/% | ||
---|---|---|---|
Cu+/(Cu++Cu2+) | Fe3+/(Fe3++Fe2+) | Oβ/(Oα+Oβ) | |
MgFe-LDO | — | 40 | 58 |
Cu0.5MgFe-LDO | 51 | 61 | 71 |
Cu1MgFe-LDO | 56 | 59 | 51 |
Cu2.5MgFe-LDO | 65 | 58 | 50 |
Fig.9 Effects of methanol on NO x conversion and N2 selectivity [reaction condition: 500 mg/L NO, 500 mg/L NH3, 750 mg/L methanol, 5% O2 and N2 as balance, GHSV=30000 ml/(g·h)]
Fig.10 Effects of SCR gas components on methanol conversion and CO2 selectivity [reaction condition: 500 mg/L NO, 500 mg/L NH3,750 mg/L methanol, 5% O2 and N2 as balance, GHSV = 30000 ml/(g·h)]
1 | Ou J M, Yuan Z B, Zheng J Y, et al. Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment?[J]. Environmental Science & Technology, 2016, 50(11): 5720-5728. |
2 | Lu C Y, Wey M Y. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas[J]. Fuel Processing Technology, 2007, 88(6): 557-567. |
3 | Zheng F, Liu C J, Ma X J, et al. Review on NH3-SCR for simultaneous abating NO x and VOCs in industrial furnaces: catalysts’ composition, mechanism, deactivation and regeneration[J]. Fuel Processing Technology, 2023, 247: 107773. |
4 | Kouraichi R, Delgado J J, López-Castro J D, et al. Deactivation of Pt/MnO x -CeO2 catalysts for the catalytic wet oxidation of phenol: formation of carbonaceous deposits and leaching of manganese[J]. Catalysis Today, 2010, 154(3/4): 195-201. |
5 | Long Y P, Su Y T, Xue Y H, et al. V2O5-WO3/TiO2 catalyst for efficient synergistic control of NO x and chlorinated organics: insights into the arsenic effect[J]. Environmental Science & Technology, 2021, 55(13): 9317-9325. |
6 | Pan H, Chen Z H, Ma M D, et al. Mutual inhibition mechanism of simultaneous catalytic removal of NO x and toluene on Mn-based catalysts[J]. Journal of Colloid and Interface Science, 2022, 607(Pt 2): 1189-1200. |
7 | Jiang W Y, Yu Y L, Bi F, et al. Synergistic elimination of NO x and chloroaromatics on a commercial V2O5-WO3/TiO2 catalyst: byproduct analyses and the SO2 effect[J]. Environmental Science & Technology, 2019, 53(21): 12657-12667. |
8 | Wang D, Chen Q Z, Zhang X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766. |
9 | Liang Q M, Li J, He H, et al. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Frontiers of Environmental Science & Engineering, 2017, 11(4): 4. |
10 | 高凤雨, 刘恒恒, 姚小龙, 等. 球形表面富锰Mn x Co3- x O4- η 尖晶石型催化剂选择性催化还原NO x 研究[J]. 物理化学学报, 2023, 39(9): 136-148. |
Gao F Y, Liu H H, Yao X L, et al. Spherical Mn x Co3- x O4- η spinel with Mn-enriched surface as high-efficiency catalysts for low-temperature selective catalytic reduction of NO x by NH3 [J]. Acta Physico-Chimica Sinica, 2023, 39(9): 136-148. | |
11 | Li Y B, Han S H, Zhang L P, et al. Manganese-based catalysts for indoor volatile organic compounds degradation with low energy consumption and high efficiency[J]. Transactions of Tianjin University, 2022, 28(1): 53-66. |
12 | Shi Y J, Guo X L, Wang Y Y, et al. New insight into the design of highly dispersed Pt supported CeO2-TiO2 catalysts with superior activity for VOCs low-temperature removal[J]. Green Energy & Environment, 2023, 8(6): 1654-1663. |
13 | Gallastegi-Villa M, Aranzabal A, Boukha Z, et al. Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NO x from waste incinerator flue gas[J]. Catalysis Today, 2015, 254: 2-11. |
14 | Wu X, Meng H, Du Y L, et al. Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: enhanced activity and synergistic mechanism[J]. Journal of Catalysis, 2020, 384: 72-87. |
15 | 于艳科, 耿梦荞, 魏德胜, 等. 钾对CuSO4/TiO2脱硝催化剂的失活效应[J]. 物理化学学报, 2023, 39(4): 76-84. |
Yu Y K, Geng M Q, Wei D S, et al. Effect of potassium on the performance of a CuSO4/TiO2 catalyst used in the selective catalytic reduction of NO x by NH3 [J]. Acta Physico-Chimica Sinica, 2023, 39(4): 76-84. | |
16 | Ghodselahi T, Vesaghi M A, Shafiekhani A, et al. XPS study of the Cu@Cu2O core-shell nanoparticles[J]. Applied Surface Science, 2008, 255(5): 2730-2734. |
17 | Fang D, Qi K, Li F X, et al. Excellent sulfur tolerance performance over Fe-SO4/TiO2 catalysts for NH3-SCR: influence of sulfation and Fe-based sulfates[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107038. |
18 | Han L P, Gao M, Feng C, et al. Fe2O3-CeO2@Al2O3 nanoarrays on Al-mesh as SO2-tolerant monolith catalysts for NO x reduction by NH3 [J]. Environmental Science & Technology, 2019, 53(10): 5946-5956. |
19 | Delimaris D, Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B: Environmental, 2009, 89(1/2): 295-302. |
20 | Cocuzza C, Sartoretti E, Novara C, et al. Copper-manganese oxide catalysts prepared by solution combustion synthesis for total oxidation of VOCs[J]. Catalysis Today, 2023, 423: 114292. |
21 | Zhang J, Qu H X. Low-temperature selective catalytic reduction of NO x with NH3 over Fe-Cu mixed oxide/ZSM-5 catalysts containing Fe2CuO4 phase[J]. Research on Chemical Intermediates, 2015, 41(7): 4961-4975. |
22 | Pan D, Ge S S, Tian J Y, et al. Research progress in the field of adsorption and catalytic degradation of sewage by hydrotalcite-derived materials[J]. Chemical Record, 2020, 20(4): 355-369. |
23 | Palomares A. Using the “memory effect” of hydrotalcites for improving the catalytic reduction of nitrates in water[J]. Journal of Catalysis, 2004, 221(1): 62-66. |
24 | He L M, Cheng H Y, Liang G F, et al. Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester[J]. Applied Catalysis A: General, 2013, 452: 88-93. |
25 | Wu X F, Liu J N, Liu L L, et al. Superior CuMgFe mixed oxide catalysts engineered by tuning the redox cycle for enhancing NO x removal performance[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108824. |
26 | Wu X F, Liu J N, Liu X Z, et al. Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH[J]. Journal of Catalysis, 2022, 407(1): 265-280. |
27 | 杜冬冬, 刘欢, 马若愚, 等. 基于分子间作用力组装的镁铝水滑石光稳定剂及其性能研究[J]. 化工学报, 2021, 72(6): 3095-3104. |
Du D D, Liu H, Ma R Y, et al. Performance of MgAl layered double hydroxides light stabilizer assembled via intermolecular forces[J]. CIESC Journal, 2021, 72(6): 3095-3104. | |
28 | 张因, 郭健健, 任欢杰, 等. 插层阴离子对以类水滑石为前体Ni-Al2O3催化剂催化乙酰丙酸加氢性能的影响[J]. 化工学报, 2020, 71(8): 3614-3624. |
Zhang Y, Guo J J, Ren H J, et al. Effect of intercalation anions on catalytic performance of hydrotalcite-like precursor Ni-Al2O3 catalyst for levulinic acid hydrogenation[J]. CIESC Journal, 2020, 71(8): 3614-3624. | |
29 | Wu X, Feng Y L, Du Y L, et al. Enhancing DeNO x performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template[J]. Applied Surface Science, 2019, 467/468: 802-810. |
30 | Wu M, Wang X Y, Dai Q G, et al. Low temperature catalytic combustion of chlorobenzene over Mn-Ce-O/γ-Al2O3 mixed oxides catalyst[J]. Catalysis Today, 2010, 158(3/4): 336-342. |
31 | Li J L, Zhang S H, Chen Y, et al. A novel three-dimensional hierarchical CuAl layered double hydroxide with excellent catalytic activity for degradation of methyl orange[J]. RSC Advances, 2017, 7(46): 29051-29057. |
32 | Dong C L, Yuan X T, Wang X, et al. Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation[J]. Journal of Materials Chemistry A, 2016, 4(29): 11292-11298. |
33 | Chen L J, Sun B, Wang X D, et al. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in l-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose[J]. Journal of Materials Chemistry. B, 2013, 1(17): 2268-2274. |
34 | Huang Y Z, Li F, Zhang X, et al. Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency[J]. International Journal of Hydrogen Energy, 2022, 47(15): 9261-9272. |
35 | Chen W, Yang S, Liu H, et al. Single-atom Ce-modified α-Fe2O3 for selective catalytic reduction of NO with NH3 [J]. Environmental Science & Technology, 2022, 56(14): 10442-10453. |
36 | 陈银飞, 刘华彦. MgFe氧化物催化氧化吸附SO2的研究[J]. 宁夏大学学报(自然科学版), 2001, 22(2): 178-180. |
Chen Y F, Liu H Y. Study on the MgFe complex oxides for SO2 catalytic oxidative adsorption[J]. Journal of Ningxia University (Natural Science Edition), 2001, 22(2): 178-180. | |
37 | Li S D, Wang H S, Li W M, et al. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor[J]. Applied Catalysis B: Environmental, 2015, 166: 260-269. |
38 | Yang L, Wang P C, Yao L, et al. Copper doping promotion on Ce/CAC-CNT catalysts with high sulfur dioxide tolerance for low-temperature NH3-SCR[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 987-997. |
39 | Zhang T, Qiu F, Chang H Z, et al. Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods[J]. Catalysis Science & Technology, 2016, 6(16): 6294-6304. |
40 | Wu X, Feng Y L, Liu X Z, et al. Redox & acidity optimizing of LDHs-based CoMnAl mixed oxides for enhancing NH3-SCR performance[J]. Applied Surface Science, 2019, 495: 143513. |
41 | Shi Y J, Kong F Z, Wan J, et al. Synergistic effect of ZSM-5 zeolite in Pt-CeO2-TiO2/ZSM-5 catalysts for highly efficient catalytic oxidation of VOCs[J]. Industrial & Engineering Chemistry Research, 2023, 62(8): 3546-3556. |
42 | Chmielarz L, Węgrzyn A, Wojciechowska M, et al. Selective catalytic oxidation (SCO) of ammonia to nitrogen over hydrotalcite originated Mg-Cu-Fe mixed metal oxides[J]. Catalysis Letters, 2011, 141(9): 1345-1354. |
43 | Yang M, Li S, Deng Y M, et al. Effect of Fe-loading in iron-based catalysts for the CH4 decomposition to H2 and nanocarbons[J]. Journal of Environmental Management, 2023, 346: 118999. |
44 | Wang B, Yang G P, Yang Q L, et al. Fabrication of nanohybrid Spinel@CuO catalysts for propane oxidation: modified spinel and enhanced activity by temperature-dependent acid sites[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27106-27118. |
45 | Chen Z, Fan C, Pang L, et al. Direct synthesis of submicron Cu-SAPO-34 as highly efficient and robust catalyst for selective catalytic reduction of NO by NH3 [J]. Applied Surface Science, 2018, 448: 671-680. |
46 | Wang Y, Yang D Y, Li S Z, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chemical Engineering Journal, 2019, 357: 258-268. |
47 | Ben Soltan W, Peng J B, Cao Z G, et al. Bimetallic Fe-Mn loaded H-ZSM-5 zeolites for excellent VOCs catalytic oxidation at low-temperatures: synergistic effects and catalytic mechanisms[J]. Chemical Engineering Journal, 2023, 475: 146251. |
48 | Morales J, Espinos J P, Caballero A, et al. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles[J]. The Journal of Physical Chemistry. B, 2005, 109(16): 7758-7765. |
49 | He Z, Lin H Q, He P, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2011, 277(1): 54-63. |
50 | Scheffe J R, Francés A, King D M, et al. Atomic layer deposition of iron(Ⅲ) oxide on zirconia nanoparticles in a fluidized bed reactor using ferrocene and oxygen[J]. Thin Solid Films, 2009, 517(6): 1874-1879. |
51 | Hu H, Cai S X, Li H R, et al. In situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NO x with NH3 [J]. The Journal of Physical Chemistry C, 2015, 119(40): 22924-22933. |
52 | Li Q, Yang H S, Qiu F M, et al. Promotional effects of carbon nanotubes on V2O5/TiO2 for NO x removal[J]. Journal of Hazardous Materials, 2011, 192(2): 915-921. |
53 | Zhu Y Y, Zhou F Y, Wang X Q, et al. Reaction behaviors of NO x and methanol simultaneous abatement over a ceria-based NH3-SCR catalyst at low-medium temperatures[J]. The Journal of Physical Chemistry C, 2021, 125(27): 14666-14674. |
54 | Bethke K A, Li C, Kung M C, et al. The role of NO2 in the reduction of NO by hydrocarbon over Cu-ZrO2 and Cu-ZSM-5 catalysts[J]. Catalysis Letters, 1995, 31(2): 287-299. |
55 | Bertinchamps F, Treinen M, Blangenois N, et al. Positive effect of NO on the performances of VO/TiO-based catalysts in the total oxidation abatement of chlorobenzene[J]. Journal of Catalysis, 2005, 230(2): 493-498. |
56 | Jiang Z Y, Jing M Z, Feng X B, et al. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application[J]. Applied Catalysis B: Environmental, 2020, 278: 119304. |
57 | Creci S, Wang X T, Carlsson P A, et al. Methoxy ad-species in MFI zeotypes during methane exposure and methanol desorption followed by in situ IR spectroscopy[J]. Catalysis Today, 2021, 369: 123-128. |
58 | Keresszegi C, Ferri D, Mallat T, et al. Unraveling the surface reactions during liquid-phase oxidation of benzyl alcohol on Pd/Al2O3: an in situ ATR-IR study[J]. The Journal of Physical Chemistry B, 2005, 109(2): 958-967. |
59 | Collins S E, Briand L E, Gambaro L A, et al. Adsorption and decomposition of methanol on gallium oxide polymorphs[J]. The Journal of Physical Chemistry C, 2008, 112(38): 14988-15000. |
60 | Barreau M, Tarot M L, Duprez D, et al. Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst[J]. Applied Catalysis B: Environmental, 2018, 220: 19-30. |
61 | Nusrat Mafy N, Muhibur Rahman M, Mollah M Y A, et al. Temperature perturbation on hydrogen bonding in aqueous solutions at different amide concentrations[J]. ChemistrySelect, 2016, 1(18): 5789-5800. |
62 | Wang X Q, Zhu Y Y, Liu Y, et al. Tailoring the simultaneous abatement of methanol and NO x on Sb-Ce-Zr catalysts via copper modification[J]. Frontiers of Environmental Science & Engineering, 2022, 16(10): 130. |
[1] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[2] | Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts [J]. CIESC Journal, 2022, 73(10): 4410-4418. |
[3] | Rui ZHANG, Jing ZHONG, Sen LIN, Jianguo YU. Study on the influence of granulation conditions on Li/Al-LDHs for lithium recovery from low grade brine [J]. CIESC Journal, 2021, 72(12): 6291-6297. |
[4] | YANG Runnong,YU Lin,ZHAO Xiangyun,YANG Xiaobo,GAO Zihan,FU Guangying,JIANG Jiuxing,LIAN Weilin,LIU Wuyuan,FAN Qun. Phi zeolite synthesized by template-free method for selective catalytic reduction of NO [J]. CIESC Journal, 2020, 71(12): 5578-5588. |
[5] | Caiyun WEI, Jingjing TAN, Xiaoli XIA, Yongxiang ZHAO. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol [J]. CIESC Journal, 2019, 70(4): 1409-1419. |
[6] | Xiaoping WU, Chenguang WANG, Qi ZHANG, Qiying LIU, Xinghua ZHANG, Longlong MA. Study on ethane dehydrogenation over PtSn-Mg(Zn)AlO catalyst [J]. CIESC Journal, 2019, 70(11): 4268-4277. |
[7] | ZHANG Shuai, ZHANG Yike, HU Rlckt, ZHEN Bin, HAN Minghan. Surface structure and activity of iron molybdate catalyst for methanol oxidation to formaldehyde [J]. CIESC Journal, 2016, 67(9): 3678-3683. |
[8] | YANG Ye, XU Chaoqun, ZHU Yanqun, LIN Fawei, MA Qiang, WANG Zhihua, CEN Kefa. Simultaneous removal of SO2 and NOx by combination of ozone oxidation and Na2S2O3 solution spray [J]. CIESC Journal, 2016, 67(5): 2041-2047. |
[9] | LIAO Yongjin, ZHANG Yaping, YU Yuexi, LI Juan, GUO Wanqiu, WANG Xiaolei. In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst [J]. CIESC Journal, 2016, 67(12): 5031-5039. |
[10] | ZHANG Yingxin, ZHOU Tao, MAO Juan, WU Xiaohui, YUAN Zhen. Efficient removal of Cr(Ⅵ) by thermal-modified layered double hydroxides (LDHs): adsorption behaviors, effect parameters and comparison with original LDHs [J]. , 2015, 66(S1): 228-236. |
[11] | CHEN Yan, WANG Liqiu, WANG Chenye, LI Huiquan. Synthesis and structural characterization of layered double hydroxide usingsteel slag as raw material [J]. CIESC Journal, 2015, 66(12): 5149-5156. |
[12] | LIU Ruping1,KONG Xianggui 2,YUE Zhao1,NIU Wencheng1,LIU Guohua1. Properties and application of layered double hydroxides for electrochemical biosensors [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2661-2667. |
[13] | SUN Jinlu 1,2,ZHEN Weijun 1,2,LI Jin 1,2. Structure,properties and applications of LDHs [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 610-616. |
[14] | TANG Huang, LI Qiang, WANG Ze-Long, YAN Dao-Jiang, XING Jian-Min. Simultaneous removal of thiophene and dibenzothiophene by immobilized Pseudomonas delafieldii R-8 cells [J]. , 2012, 20(1): 47-51. |
[15] | LIU Lizhu,ZHANG Liben,WEN Yunfei,MA Chengguo. Effect of coupling agent on mechanical and rheological properties of LLDPE/LDHs composites [J]. , 2008, 27(3): 435-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||