CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1903-1911.DOI: 10.11949/0438-1157.20231246
• Separation engineering • Previous Articles Next Articles
Rufeng XU1(), Yucheng CHEN1, Dan GAO2, Jingyu JIAO2, Dong GAO2, Haibin WANG2, Shanjing YAO1, Dongqiang LIN1()
Received:
2023-12-01
Revised:
2024-02-20
Online:
2024-06-25
Published:
2024-05-25
Contact:
Dongqiang LIN
许茹枫1(), 陈煜成1, 高丹2, 焦静雨2, 高栋2, 王海彬2, 姚善泾1, 林东强1()
通讯作者:
林东强
作者简介:
许茹枫(1999—),女,硕士研究生,528869431@qq.com
基金资助:
CLC Number:
Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation[J]. CIESC Journal, 2024, 75(5): 1903-1911.
许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911.
Add to citation manager EndNote|Ris|BibTeX
参数类别 | 参数名称 | 参数符号 | 数值 | 单位 |
---|---|---|---|---|
层析柱参数 | 柱径 | dcol | 10 | mm |
床高 | L | 196 | mm | |
总空隙率 | εt | 0.91 | — | |
离子交换容量 | Λ | 0.58 | mol/L | |
操作条件参数 | 单抗上样浓度 | cinj | 3.16 | mg/ml |
线性流速 | u | 0.467 | mm/s | |
表观轴向分散系数 | Dapp | 0.0989 | mm2/s |
Table 1 Chromatographic system and column parameters
参数类别 | 参数名称 | 参数符号 | 数值 | 单位 |
---|---|---|---|---|
层析柱参数 | 柱径 | dcol | 10 | mm |
床高 | L | 196 | mm | |
总空隙率 | εt | 0.91 | — | |
离子交换容量 | Λ | 0.58 | mol/L | |
操作条件参数 | 单抗上样浓度 | cinj | 3.16 | mg/ml |
线性流速 | u | 0.467 | mm/s | |
表观轴向分散系数 | Dapp | 0.0989 | mm2/s |
参数名称 | 参数符号 | A1 | A2 | M |
---|---|---|---|---|
特征电荷数 | υ | 11.58 | 11.75 | 11.89 |
平衡常数 | keq | 4.23×10-7 | 6.20×10-7 | 7.34×10-7 |
空间因子 | σ | 10.47 | 10.97 | 11.70 |
动力学常数 | kkin | 0.35×10-8 | 0.20×10-8 | 0.10×10-8 |
Table 2 SMA model parameters
参数名称 | 参数符号 | A1 | A2 | M |
---|---|---|---|---|
特征电荷数 | υ | 11.58 | 11.75 | 11.89 |
平衡常数 | keq | 4.23×10-7 | 6.20×10-7 | 7.34×10-7 |
空间因子 | σ | 10.47 | 10.97 | 11.70 |
动力学常数 | kkin | 0.35×10-8 | 0.20×10-8 | 0.10×10-8 |
洗脱方式 | 最大收率/%(纯度为89%) | |
---|---|---|
单步洗脱 | 等度洗脱 | 59.2 |
梯度洗脱 | 61.9 | |
两步洗脱 | 两步阶跃 | 65.5 |
等度-梯度 | 64.2 | |
梯度-等度 | 65.6 | |
两步梯度 | 64.1 | |
三步洗脱 | 三步阶跃 | 65.5 |
等度-梯度-等度 | 65.1 | |
梯度-等度-梯度 | 65.0 |
Table 3 Process optimization of different elution methods
洗脱方式 | 最大收率/%(纯度为89%) | |
---|---|---|
单步洗脱 | 等度洗脱 | 59.2 |
梯度洗脱 | 61.9 | |
两步洗脱 | 两步阶跃 | 65.5 |
等度-梯度 | 64.2 | |
梯度-等度 | 65.6 | |
两步梯度 | 64.1 | |
三步洗脱 | 三步阶跃 | 65.5 |
等度-梯度-等度 | 65.1 | |
梯度-等度-梯度 | 65.0 |
Fig.6 Effects of first-step elution salt concentration on purity and yield of optimized two-step stepwise elution under the robust constraints and fixed collection range
Fig.8 Effects of first-step elution salt concentration on purity and yield of optimized two-step stepwise elution under the robust constraints and changed collection range
序号 | 洗脱总长度/CV | 收集 起点/CV | 第一步等度洗脱 | 纯度 | 收率 | |||||
---|---|---|---|---|---|---|---|---|---|---|
洗脱长度/CV | 盐浓度/(mmol/L) | 预测值/% | 实验值/% | 偏差/% | 预测值/% | 实验值/% | 偏差/% | |||
Ⅰ | 15.0 | 13.80 | 14.42 | 103.4 | 89.0 | 92.2 | 3.47 | 65.5 | 64.2 | 2.02 |
Ⅱ | 15.0 | 11.00 | 14.38 | 108.5 | 89.0 | 91.1 | 2.31 | 63.4 | 59.8 | 6.02 |
Ⅲ | 15.0 | 16.06 | 14.38 | 98.9 | 89.0 | 91.7 | 2.94 | 43.8 | 43.5 | 0.69 |
Ⅳ | 15.0 | 4.40 | 14.38 | 117.5 | 89.0 | 89.0 | 0 | 60.0 | 57.5 | 4.35 |
Table 4 Comparison of chromatographic separation verification experiments and model predicted results
序号 | 洗脱总长度/CV | 收集 起点/CV | 第一步等度洗脱 | 纯度 | 收率 | |||||
---|---|---|---|---|---|---|---|---|---|---|
洗脱长度/CV | 盐浓度/(mmol/L) | 预测值/% | 实验值/% | 偏差/% | 预测值/% | 实验值/% | 偏差/% | |||
Ⅰ | 15.0 | 13.80 | 14.42 | 103.4 | 89.0 | 92.2 | 3.47 | 65.5 | 64.2 | 2.02 |
Ⅱ | 15.0 | 11.00 | 14.38 | 108.5 | 89.0 | 91.1 | 2.31 | 63.4 | 59.8 | 6.02 |
Ⅲ | 15.0 | 16.06 | 14.38 | 98.9 | 89.0 | 91.7 | 2.94 | 43.8 | 43.5 | 0.69 |
Ⅳ | 15.0 | 4.40 | 14.38 | 117.5 | 89.0 | 89.0 | 0 | 60.0 | 57.5 | 4.35 |
1 | Mullard A. FDA approves 100th monoclonal antibody product[J]. Nature Reviews Drug Discovery, 2021, 20: 491-495. |
2 | Fisher A C, Kamga M H, Agarabi C, et al. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing[J]. Trends in Biotechnology, 2019, 37(3): 253-267. |
3 | Kaplon H, Chenoweth A, Crescioli S, et al. Antibodies to watch in 2022[J]. MAbs, 2022, 14(1): 2014296. |
4 | Rathore A S, Winkle H. Quality by design for biopharmaceuticals[J]. Nature Biotechnology, 2009, 27: 26-34. |
5 | Saleh D, Wang G, Rischawy F, et al. In silico process characterization for biopharmaceutical development following the quality by design concept[J]. Biotechnology Progress, 2021, 37(6): e3196. |
6 | Hong G, Bazin-Redureau M I, Scherrmann J M. Pharmacokinetics and organ distribution of cationized colchicine-specific IgG and Fab fragments in rat[J]. Journal of Pharmaceutical Sciences, 1999, 88(1): 147-153. |
7 | Chung S, Tian J, Tan Z J, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles[J]. Biotechnology and Bioengineering, 2018, 115(7): 1646-1665. |
8 | Ahmed S, Atia N N, Rageh A H. Selectivity enhanced cation exchange chromatography for simultaneous determination of peptide variants[J]. Talanta, 2019, 199: 347-354. |
9 | Fekete S, Beck A, Veuthey J L, et al. Ion-exchange chromatography for the characterization of biopharmaceuticals[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113: 43-55. |
10 | Benner S W, Welsh J P, Rauscher M A, et al. Prediction of lab and manufacturing scale chromatography performance using mini-columns and mechanistic modeling[J]. Journal of Chromatography. A, 2019, 1593: 54-62. |
11 | Jakobsson N, Degerman M, Stenborg E, et al. Model based robustness analysis of an ion-exchange chromatography step[J]. Journal of Chromatography. A, 2007, 1138(1/2): 109-119. |
12 | Close E J, Salm J R, Iskra T, et al. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: visualization and kinetic studies[J]. Biotechnology and Bioengineering, 2013, 110(9): 2425-2435. |
13 | Andris S, Hubbuch J. Modeling of hydrophobic interaction chromatography for the separation of antibody-drug conjugates and its application towards quality by design[J]. Journal of Biotechnology, 2020, 317: 48-58. |
14 | Lin D Q, Zhang Q L, Yao S J. Model-assisted approaches for continuous chromatography: current situation and challenges[J]. Journal of Chromatography. A, 2021, 1637: 461855. |
15 | Forrer N, Butté A, Morbidelli M. Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column (part Ⅰ): Adsorption characterization[J]. Journal of Chromatography. A, 2008, 1214(1/2): 59-70. |
16 | Brooks C A, Cramer S M, Rosano T G. Preparative chromatographic purification of cyclosporine metabolites[J]. Clinical Chemistry, 1993, 39(3): 457-466. |
17 | Yamamoto S. Plate height determination for gradient elution chromatography of proteins[J]. Biotechnology and Bioengineering, 1995, 48(5): 444-451. |
18 | Keller W R, Evans S T, Ferreira G, et al. Use of MiniColumns for linear isotherm parameter estimation and prediction of benchtop column performance[J]. Journal of Chromatography. A, 2015, 1418: 94-102. |
19 | Saleh D, Wang G, Mueller B, et al. Cross-scale quality assessment of a mechanistic cation exchange chromatography model[J]. Biotechnology Progress, 2021, 37(1): e3081. |
20 | Creasy A, Reck J, Pabst T, et al. Systematic interpolation method predicts antibody monomer-dimer separation by gradient elution chromatography at high protein loads[J]. Biotechnology Journal, 2019, 14(3): e1800132. |
21 | Saleh D, Wang G, Müller B, et al. Straightforward method for calibration of mechanistic cation exchange chromatography models for industrial applications[J]. Biotechnology Progress, 2020, 36(4): e2984. |
22 | Chen Y C, Yao S J, Lin D Q. Parameter-by-parameter method for steric mass action model of ion exchange chromatography: theoretical considerations and experimental verification[J]. Journal of Chromatography. A, 2022, 1680: 463418. |
23 | Chen Y C, Yao S J, Lin D Q. Parameter-by-parameter method for steric mass action model of ion exchange chromatography: simplified estimation for steric shielding factor[J]. Journal of Chromatography. A, 2023, 1687: 463655. |
24 | Huuk T C, Briskot T, Hahn T, et al. A versatile noninvasive method for adsorber quantification in batch and column chromatography based on the ionic capacity[J]. Biotechnology Progress, 2016, 32(3): 666-677. |
25 | Hahn T, Huuk T, Osberghaus A, et al. Calibration-free inverse modeling of ion-exchange chromatography in industrial antibody purification[J]. Engineering in Life Sciences, 2016, 16(2): 107-113. |
26 | Rüdt M, Gillet F, Heege S, et al. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography[J]. Journal of Chromatography. A, 2015, 1413: 68-76. |
27 | Heymann W, Glaser J, Schlegel F, et al. Advanced score system and automated search strategies for parameter estimation in mechanistic chromatography modeling[J]. Journal of Chromatography A, 2022, 1661: 462693. |
28 | Saleh D, Hess R, Ahlers-Hesse M, et al. Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography[J]. Biotechnology and Bioengineering, 2021, 118(8): 2923-2933. |
29 | Natarajan V, Ghose S, Cramer S M. Comparison of linear gradient and displacement separations in ion-exchange systems[J]. Biotechnology and Bioengineering, 2002, 78(4): 365-375. |
30 | Hahn T, Baumann P, Huuk T, et al. UV absorption-based inverse modeling of protein chromatography[J]. Engineering in Life Sciences, 2016, 16(2): 99-106. |
31 | Cherra D E, Khattabi S, Guiochon G. Adsorption behavior and prediction of the band profiles of the enantiomers of 3-chloro-1-phenyl-1-propanol. Influence of the mass transfer kinetics[J]. Journal of Chromatography. A, 2000, 877(1/2): 109-122. |
[1] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[2] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[3] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[4] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[5] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[6] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[7] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[8] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[9] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[10] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[11] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[12] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[13] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[14] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[15] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||