CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2594-2603.DOI: 10.11949/0438-1157.20240098
• Separation engineering • Previous Articles Next Articles
Linfeng MA(), Aitong OU, Zhiyuan LI, Yao LI, Runze LIU, Xiaole WU, Jingtao XU(
)
Received:
2024-01-22
Revised:
2024-04-16
Online:
2024-08-09
Published:
2024-07-25
Contact:
Jingtao XU
马林峰(), 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛(
)
通讯作者:
徐景涛
作者简介:
马林峰(1999—),男,硕士研究生,15650560960@163.com
基金资助:
CLC Number:
Linfeng MA, Aitong OU, Zhiyuan LI, Yao LI, Runze LIU, Xiaole WU, Jingtao XU. High-efficiency adsorption of heavy metal ions by Na2S modified biochar: preparation and adsorption mechanism[J]. CIESC Journal, 2024, 75(7): 2594-2603.
马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603.
生物炭 | 元素含量/% | 原子比 | 灰分/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Na | H/C | O/C | (N+O)/C | ||
BC | 62.44 | 3.44 | 30.15 | 3.18 | — | — | 0.06 | 0.48 | 0.53 | 11.82 |
BCS(0.1) | 63.08 | 2.48 | 29.15 | 2.97 | 0.89 | 1.43 | 0.05 | 0.46 | 0.51 | 12.53 |
BCS(0.3) | 64.58 | 3.58 | 28.94 | 2.48 | 2.47 | 5.11 | 0.04 | 0.45 | 0.49 | 13.35 |
BCS | 58.11 | 3.15 | 26.52 | 2.33 | 3.46 | 6.44 | 0.05 | 0.46 | 0.50 | 14.27 |
Table 1 Effect of modifier concentration on elemental content in biochar
生物炭 | 元素含量/% | 原子比 | 灰分/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Na | H/C | O/C | (N+O)/C | ||
BC | 62.44 | 3.44 | 30.15 | 3.18 | — | — | 0.06 | 0.48 | 0.53 | 11.82 |
BCS(0.1) | 63.08 | 2.48 | 29.15 | 2.97 | 0.89 | 1.43 | 0.05 | 0.46 | 0.51 | 12.53 |
BCS(0.3) | 64.58 | 3.58 | 28.94 | 2.48 | 2.47 | 5.11 | 0.04 | 0.45 | 0.49 | 13.35 |
BCS | 58.11 | 3.15 | 26.52 | 2.33 | 3.46 | 6.44 | 0.05 | 0.46 | 0.50 | 14.27 |
生物炭 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
BC | 46.16 | 0.049 | 2.16 |
BCS(0.1) | 49.34 | 0.066 | 2.74 |
BCS(0.3) | 52.13 | 0.089 | 3.17 |
BCS | 54.45 | 0.102 | 3.74 |
Table 2 Effect of modifier concentration on the pore structure of modified biochar
生物炭 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
BC | 46.16 | 0.049 | 2.16 |
BCS(0.1) | 49.34 | 0.066 | 2.74 |
BCS(0.3) | 52.13 | 0.089 | 3.17 |
BCS | 54.45 | 0.102 | 3.74 |
重金属离子 | 最大吸附量/(mg/g) | |||
---|---|---|---|---|
BC | BCS(0.1) | BCS(0.3) | BCS | |
Pb2+ | 19.69 | 464.11 | 477.25 | 494.99 |
Cd2+ | 15.63 | 99.94 | 121.45 | 131.14 |
Zn2+ | 13.98 | 79.29 | 81.03 | 94.89 |
Table 3 Effect of different concentrations of Na2S modified biochar on the maximum adsorption capacity of Pb2+, Cd2+ and Zn2+
重金属离子 | 最大吸附量/(mg/g) | |||
---|---|---|---|---|
BC | BCS(0.1) | BCS(0.3) | BCS | |
Pb2+ | 19.69 | 464.11 | 477.25 | 494.99 |
Cd2+ | 15.63 | 99.94 | 121.45 | 131.14 |
Zn2+ | 13.98 | 79.29 | 81.03 | 94.89 |
重金属离子 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL/(L/mg) | Qm/(mg/g) | R2 | KF | 1/n | R2 | |
Pb2+ | 0.05 | 494.99 | 0.96 | 10.19 | 0.29 | 0.75 |
Cd2+ | 0.45 | 131.14 | 0.95 | 4.55 | 0.33 | 0.73 |
Zn2+ | 1.49 | 94.89 | 0.93 | 5.33 | 0.14 | 0.72 |
Table 4 Isothermal model fitting parameters of BCS for Pb2+, Cd2+, Zn2+
重金属离子 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL/(L/mg) | Qm/(mg/g) | R2 | KF | 1/n | R2 | |
Pb2+ | 0.05 | 494.99 | 0.96 | 10.19 | 0.29 | 0.75 |
Cd2+ | 0.45 | 131.14 | 0.95 | 4.55 | 0.33 | 0.73 |
Zn2+ | 1.49 | 94.89 | 0.93 | 5.33 | 0.14 | 0.72 |
重金属离子 | 生物质 | 改性剂 | 吸附量/(mg/g) | 文献 |
---|---|---|---|---|
Hg2+ | 玉米秸秆 | S | 268.45 | [ |
Hg2+ | 牛粪 | S | 407.8 | [ |
Cu2+ | 花生壳 | CH4N2S、H3PO4 | 21.20 | [ |
Cu2+ | 玉米芯 | Na2S2O3 | 165.00 | [ |
Pb2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 124.62 | [ |
Pb2+ | 玉米芯 | Na2S2O3 | 421.80 | [ |
Pb2+ | 芦苇秸秆 | Na2S | 438.86 | 本研究 |
Cd2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 57.71 | [ |
Cd2+ | 玉米秸秆 | Fe2(SO4)3 | 32.55 | [ |
Cd2+ | 芦苇秸秆 | Na2S | 131.14 | 本研究 |
Zn2+ | 甘蔗 | Na2S2O3 | 27.00 | [ |
Zn2+ | 芦苇秸秆 | Na2S | 94.89 | 本研究 |
Ni2+ | 玉米芯 | Na2S | 15.40 | [ |
Table 5 Current status of adsorption and removal of heavy metal ions from water by sulfide modified biochar
重金属离子 | 生物质 | 改性剂 | 吸附量/(mg/g) | 文献 |
---|---|---|---|---|
Hg2+ | 玉米秸秆 | S | 268.45 | [ |
Hg2+ | 牛粪 | S | 407.8 | [ |
Cu2+ | 花生壳 | CH4N2S、H3PO4 | 21.20 | [ |
Cu2+ | 玉米芯 | Na2S2O3 | 165.00 | [ |
Pb2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 124.62 | [ |
Pb2+ | 玉米芯 | Na2S2O3 | 421.80 | [ |
Pb2+ | 芦苇秸秆 | Na2S | 438.86 | 本研究 |
Cd2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 57.71 | [ |
Cd2+ | 玉米秸秆 | Fe2(SO4)3 | 32.55 | [ |
Cd2+ | 芦苇秸秆 | Na2S | 131.14 | 本研究 |
Zn2+ | 甘蔗 | Na2S2O3 | 27.00 | [ |
Zn2+ | 芦苇秸秆 | Na2S | 94.89 | 本研究 |
Ni2+ | 玉米芯 | Na2S | 15.40 | [ |
重金属离子 | 伪一级动力学模型 | 伪二级动力学模型 | Elvoich动力学模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg/g) | kl | R2 | Qe/(mg/g) | k2 | R2 | α | β | R2 | |
Pb2+ | 475.51 | 0.22 | 0.96 | 514.29 | 0.10 | 0.98 | 2.03 | 0.73 | 0.88 |
Cd2+ | 123.91 | 0.11 | 0.96 | 144.74 | 0.09 | 0.98 | 5.87 | 0.75 | 0.97 |
Zn2+ | 89.22 | 0.17 | 0.96 | 99.97 | 0.26 | 0.98 | 4.23 | 0.89 | 0.94 |
Table 6 Kinetic model fitting parameters of BCS for Pb2+, Cd2+ and Zn2+
重金属离子 | 伪一级动力学模型 | 伪二级动力学模型 | Elvoich动力学模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg/g) | kl | R2 | Qe/(mg/g) | k2 | R2 | α | β | R2 | |
Pb2+ | 475.51 | 0.22 | 0.96 | 514.29 | 0.10 | 0.98 | 2.03 | 0.73 | 0.88 |
Cd2+ | 123.91 | 0.11 | 0.96 | 144.74 | 0.09 | 0.98 | 5.87 | 0.75 | 0.97 |
Zn2+ | 89.22 | 0.17 | 0.96 | 99.97 | 0.26 | 0.98 | 4.23 | 0.89 | 0.94 |
1 | Cheng S P. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192-198. |
2 | Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, et al. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods[J]. Environmental Technology & Innovation, 2021, 22: 101504. |
3 | Saleh T A, Mustaqeem M, Khaled M. Water treatment technologies in removing heavy metal ions from wastewater: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2022, 17: 100617. |
4 | Wang Z, Luo P P, Zha X B, et al. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil[J]. Journal of Cleaner Production, 2022, 379: 134043. |
5 | Wang X Q, Guo Z Z, Hu Z, et al. Recent advances in biochar application for water and wastewater treatment: a review[J]. Peer, 2020, 8: e9164. |
6 | Kamali M, Appels L, Kwon E E, et al. Biochar in water and wastewater treatment—a sustainability assessment[J]. Chemical Engineering Journal, 2021, 420: 129946. |
7 | Wang L, Wang Y J, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. |
8 | Hu X L, Xue Y W, Liu L N, et al. Preparation and characterization of Na2S-modified biochar for nickel removal[J]. Environmental Science and Pollution Research International, 2018, 25(10): 9887-9895. |
9 | Enders A, Lehmann J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar[J]. Communications in Soil Science and Plant Analysis, 2012, 43(7): 1042-1052. |
10 | Seredych M, Bandosz T J. Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 133-141. |
11 | Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. |
12 | Qiu B B, Tao X D, Wang H, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105081. |
13 | Wang Y, Hu Y T, Zhao X, et al. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times[J]. Energy & Fuels, 2013, 27(10): 5890-5899. |
14 | Leng L J, Xiong Q, Yang L H, et al. An overview on engineering the surface area and porosity of biochar[J]. Science of the Total Environment, 2021, 763: 144204. |
15 | 徐昊, 史广宇, 田晓庆, 等. 颗粒状污泥生物炭对锌铜共污染水体的吸附效应分析[J]. 环境科学学报, 2024, 44(3): 95-104. |
Xu H, Shi G Y, Tian X Q, et al. Enhanced adsorption of zinc and copper co-pollution in water using modified granular sludge biochar[J]. Acta Scientiae Circumstantiae, 2024, 44(3): 95-104. | |
16 | Schimmelpfennig S, Glaser B. One step forward toward characterization: some important material properties to distinguish biochars[J]. Journal of Environmental Quality, 2012, 41(4): 1001-1013. |
17 | Choudhury A, Lansing S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104837. |
18 | Lyu H H, Tang J C, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal, 2017, 322: 516-524. |
19 | Yu S X, Zhang W, Dong X W, et al. A review on recent advances of biochar from agricultural and forestry wastes: preparation, modification and applications in wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111638. |
20 | Banik C, Lawrinenko M, Bakshi S, et al. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars[J]. Journal of Environmental Quality, 2018, 47(3): 452-461. |
21 | da Silva Veiga P A, Cerqueira M H, Gonçalves M G, et al. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: structural characterization of the biochars produced[J]. Journal of Environmental Management, 2021, 285: 112145. |
22 | Huang S Z, Liang Q W, Geng J J, et al. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(Ⅱ) and adsorption mechanisms[J]. Materials Chemistry and Physics, 2019, 238: 121919. |
23 | Zhang H C, Wang T, Sui Z F, et al. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma[J]. Fuel, 2019, 253: 703-712. |
24 | Wu C, Shi L Z, Xue S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647: 1158-1168. |
25 | Leng L J, Liu R F, Xu S Y, et al. An overview of sulfur-functional groups in biochar from pyrolysis of biomass[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107185. |
26 | Rao C N R, Venkataraghavan R. The C ̿ S stretching frequency and the “—N—C ̿ S bands” in the infrared[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989, 45: 299-305. |
27 | Shao F L, Xu J T, Chen F Y, et al. Insights into olation reaction-driven coagulation and adsorption: a pathway for exploiting the surface properties of biochar[J]. Science of the Total Environment, 2023, 854: 158595. |
28 | Dou S, Ke X X, Shao Z D, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin[J]. Chemosphere, 2022, 287: 131962. |
29 | Dhar A K, Himu H A, Bhattacharjee M, et al. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review[J]. Environmental Science and Pollution Research International, 2023, 30(3): 5440-5474. |
30 | Vigneshwaran S, Sirajudheen P, Karthikeyan P, et al. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes[J]. Surfaces and Interfaces, 2021, 23: 100920. |
31 | 张奎, 王雪梅, 李玉环, 等. 硫改性牛粪生物炭对Hg2+的高效吸附及其机理[J]. 环境工程, 2022, 40(4): 79-88. |
Zhang K, Wang X M, Li Y H, et al. High efficiency adsorption of Hg2+ by sulfur-modified cow manure biochar and its mechanism[J]. Environmental Engineering, 2022, 40(4): 79-88. | |
32 | 闵炳坤, 李坤权. 高比表面硫脲改性花生壳炭的制备及对四环素和铜的吸附[J]. 环境科学, 2023, 44(3): 1528-1536. |
Min B K, Li K Q. Preparation of high specific surface thiourea modified peanut shell carbon and adsorption of tetracycline and copper[J]. Environmental Science, 2023, 44(3): 1528-1536. | |
33 | Yin M M, Bai X G, Wu D P, et al. Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption[J]. Chemical Engineering Journal, 2022, 433: 134441. |
34 | Cao B, Qu J H, Yuan Y H, et al. Efficient scavenging of aqueous Pb(Ⅱ)/Cd(Ⅱ) by sulfide-iron decorated biochar: performance, mechanisms and reusability exploration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107531. |
35 | Zhao R, Cao X F, Li T, et al. Co-removal effect and mechanism of Cr(Ⅵ) and Cd(Ⅱ) by biochar-supported sulfide-modified nanoscale zero-valent iron in a binary system[J]. Molecules, 2022, 27(15): 4742. |
36 | Khokhlov A V, Sych N V, Khokhlova L I. Using modified biochar from bagassa for removal heavy metal[J]. Journal of Chemistry and Technologies, 2022, 30(3): 459-465. |
37 | Tang Y, Chen Q M, Li W Q, et al. Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability[J]. Journal of Hazardous Materials, 2020, 388: 122059. |
38 | Wan S L, Qiu L, Tang G, et al. Ultrafast sequestration of cadmium and lead from water by manganese oxide supported on a macro-mesoporous biochar[J]. Chemical Engineering Journal, 2020, 387: 124095. |
39 | Li H B, Dong X L, da Silva E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. |
40 | Tang N, Niu C G, Li X T, et al. Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: isotherm and kinetics modeling[J]. Science of the Total Environment, 2018, 635: 1331-1344. |
[1] | Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene [J]. CIESC Journal, 2024, 75(7): 2565-2573. |
[2] | Yan WANG, Jiawen ZHOU, Peiliang SUN, Yong CHEN, Yuanhong QI, Chong PENG. Removal of Hg2+ from water by magnetic polyaminothiazole adsorbent [J]. CIESC Journal, 2024, 75(6): 2283-2298. |
[3] | Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. CIESC Journal, 2024, 75(6): 2332-2343. |
[4] | Lei GAO, Wen DAI, Zhonglian YANG, Shuping LI, Gangyin YAN, Qi SUN, Yongze LU, Guangcan ZHU. Effect of Hg on nitrogen removal performance of wastewater treatment system in low-pressure conditions [J]. CIESC Journal, 2024, 75(5): 2036-2046. |
[5] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[6] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[7] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[8] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[9] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[10] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[11] | Tianyong ZHANG, Jingyi ZHANG, Shuang JIANG, Bin LI, Dongjun LYU, Dumin CHEN, Xue CHEN. Preparation and utilization of carbon-based adsorbent from organic pollutants in waste salt during acidic blue AS dye production [J]. CIESC Journal, 2024, 75(3): 890-899. |
[12] | Zhuoyu LI, Peng JIN, Xiaoyan CHEN, Zeyu ZHAO, Qinghong WANG, Chunmao CHEN, Yali ZHAN. Effect and mechanism on the degradation of aqueous bisphenol A by zero valent iron activated peroxyacetic acid system [J]. CIESC Journal, 2024, 75(3): 987-999. |
[13] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[14] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[15] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||