CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3277-3286.DOI: 10.11949/0438-1157.20240289
• Energy and environmental engineering • Previous Articles Next Articles
Junfeng WANG(), Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG
Received:
2024-03-12
Revised:
2024-06-03
Online:
2024-10-10
Published:
2024-09-25
Contact:
Junfeng WANG
通讯作者:
王军锋
作者简介:
王军锋(1975—),男,博士,教授,wangjunfeng@ujs.edu.cn
基金资助:
CLC Number:
Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration[J]. CIESC Journal, 2024, 75(9): 3277-3286.
王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286.
模式 | d/mm | 环电极 | 孔板电极 | ||
---|---|---|---|---|---|
ΔT/℃ | δ/% | ΔT/℃ | δ/% | ||
GAD | 5 | 4.3±0.4 | 41.1 | 4.4±0.6 | 42.2 |
10 | 9.0±0.6 | 40.6 | 7.4±0.9 | 32.1 | |
GD | 15 | 16.9±0.8 | 42.3 | 20.1±0.7 | 54.5 |
20 | 16.5±0.5 | 40.5 | 18.9±0.3 | 54.0 | |
25 | 19.8±0.7 | 46.9 | 21.2±0.5 | 59.1 |
Table 1 Effect of electrode spacing on temperature variation
模式 | d/mm | 环电极 | 孔板电极 | ||
---|---|---|---|---|---|
ΔT/℃ | δ/% | ΔT/℃ | δ/% | ||
GAD | 5 | 4.3±0.4 | 41.1 | 4.4±0.6 | 42.2 |
10 | 9.0±0.6 | 40.6 | 7.4±0.9 | 32.1 | |
GD | 15 | 16.9±0.8 | 42.3 | 20.1±0.7 | 54.5 |
20 | 16.5±0.5 | 40.5 | 18.9±0.3 | 54.0 | |
25 | 19.8±0.7 | 46.9 | 21.2±0.5 | 59.1 |
技术路线 | 原料 | 电极配置 | EY/(g/kWh) | EE/% | 文献 | ||
---|---|---|---|---|---|---|---|
electrolysis | 水 | — | — | — | 11.9~19.84 | — | [ |
microwave | 甲烷+水 | — | 2202.3 | 71.1 | 13.25 | 37.9 | [ |
microwave | 乙醇+水 | — | 17400 | 59.1 | 62.44 | — | [ |
Laval nozzle arc | 乙醇+水 | — | 2500 | 40 | 99.21 | 28 | [ |
DBD | 乙醇+水 | — | 48 | 58.2 | 12.32 | — | [ |
AC discharge | 甲醇+水 | — | 2780 | 约63 | 29.08 | 约42 | [ |
GAD | 甲烷+水 | 刀片式 | 135.27 | 72.2 | 16.47 | 28.8 | [ |
GAD | 甲醇+氮气 | 同轴针-筒 | 2252 | 53.1 | 34.54 | 约51 | [ |
GAD | 甲醇 | 针-环 | 567 | 62.58 | 55.8 | 55.1 | [ |
GAD | 甲醇 | 阵列针-环 | 1188.54 | 65.65 | 69.75 | 71.12 | this work |
Table 2 Comparison of hydrogen production performance by different methods
技术路线 | 原料 | 电极配置 | EY/(g/kWh) | EE/% | 文献 | ||
---|---|---|---|---|---|---|---|
electrolysis | 水 | — | — | — | 11.9~19.84 | — | [ |
microwave | 甲烷+水 | — | 2202.3 | 71.1 | 13.25 | 37.9 | [ |
microwave | 乙醇+水 | — | 17400 | 59.1 | 62.44 | — | [ |
Laval nozzle arc | 乙醇+水 | — | 2500 | 40 | 99.21 | 28 | [ |
DBD | 乙醇+水 | — | 48 | 58.2 | 12.32 | — | [ |
AC discharge | 甲醇+水 | — | 2780 | 约63 | 29.08 | 约42 | [ |
GAD | 甲烷+水 | 刀片式 | 135.27 | 72.2 | 16.47 | 28.8 | [ |
GAD | 甲醇+氮气 | 同轴针-筒 | 2252 | 53.1 | 34.54 | 约51 | [ |
GAD | 甲醇 | 针-环 | 567 | 62.58 | 55.8 | 55.1 | [ |
GAD | 甲醇 | 阵列针-环 | 1188.54 | 65.65 | 69.75 | 71.12 | this work |
1 | Kosco J, Gonzalez-Carrero S, Howells C T, et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution[J]. Nature Energy, 2022, 7: 340-351. |
2 | Veziroğlu T N, Şahi˙n S. 21st century’s energy: hydrogen energy system[J]. Energy Conversion and Management, 2008, 49(7): 1820-1831. |
3 | Do T N, Kwon H, Park M, et al. Carbon-neutral hydrogen production from natural gas via electrified steam reforming: techno-economic-environmental perspective[J]. Energy Conversion and Management, 2023, 279: 116758. |
4 | Akande O, Lee B. Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2874-2884. |
5 | Budhraja N, Pal A, Mishra R S. Plasma reforming for hydrogen production: pathways, reactors and storage[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2467-2482. |
6 | Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12(2): 463-491. |
7 | 张俊杰, 孙旺, 高啸天, 等. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763. |
Zhang J J, Sun W, Gao X T, et al. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74(12): 4749-4763. | |
8 | 丁天英, 刘景林, 赵天亮, 等. 非热等离子体烃类燃料氧化重整反应器的研究进展[J]. 化工学报, 2015, 66(3): 872-879. |
Ding T Y, Liu J L, Zhao T L, et al. Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel[J]. CIESC Journal, 2015, 66(3): 872-879. | |
9 | Yan Z C, Li C, Lin W H. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions[J]. International Journal of Hydrogen Energy, 2009, 34(1): 48-55. |
10 | Lian H Y, Liu J L, Li X S, et al. Plasma chain catalytic reforming of methanol for on-board hydrogen production[J]. Chemical Engineering Journal, 2019, 369: 245-252. |
11 | Xin Y B, Sun B, Zhu X M, et al. Characteristics of hydrogen produced by pulsed discharge in ethanol solution[J]. Applied Energy, 2016, 168: 122-129. |
12 | Zhang W, Wang J F, Wang Z T, et al. Review of bubble dynamics on charged liquid-gas flow[J]. Physics of Fluids, 2023, 35(2): 021302. |
13 | Wu T Y, Wang J F, Zhang W, et al. Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge[J]. Energy, 2023, 273: 127252. |
14 | Zhu T H, Liu J L, Xin Y B, et al. Hydrogen production by microwave discharge in liquid: study on the characteristics effect of suspended electrode[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105529. |
15 | 吴祖良, 成雨莲, 高尔豪, 等. 甲烷等离子体裂解制氢制碳的影响因素研究[J]. 石油学报(石油加工), 2023, 39(5): 1205-1214. |
Wu Z L, Cheng Y L, Gao E H, et al. Study on the influencing factors of hydrogen and carbon production from methane plasma cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1205-1214. | |
16 | Du C M, Li H X, Zhang L, et al. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8318-8329. |
17 | Chen W H, Biswas P P, Ong H C, et al. A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: steam reforming, partial oxidation, and autothermal reforming[J]. Fuel, 2023, 333: 126526. |
18 | Song L J, Kong Y L, Li X H. Hydrogen production from partial oxidation of methane over dielectric barrier discharge plasma and NiO/γ-Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19869-19876. |
19 | Wang Q Y, Wang J Q, Zhu T H, et al. Characteristics of methane wet reforming driven by microwave plasma in liquid phase for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34105-34115. |
20 | Ulejczyk B, Nogal Ł, Młotek M, et al. Hydrogen production from ethanol using dielectric barrier discharge[J]. Energy, 2019, 174: 261-268. |
21 | Burlica R, Shih K Y, Hnatiuc B, et al. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9466-9470. |
22 | Khan A, Rashid M, Rehman A, et al. A comprehensive review of the methane decomposition using a gliding arc discharge reactor for hydrogen generation[J]. Journal of the Energy Institute, 2023, 109: 101309. |
23 | Younas M, Shafique S, Faisal A, et al. Hydrogen production through water vapors using optimized corona-DBD hybrid plasma micro-reactor[J]. Fuel, 2023, 331: 125838. |
24 | Aleknaviciute I, Karayiannis T G, Collins M W, et al. Methane decomposition under a corona discharge to generate CO x -free hydrogen[J]. Energy, 2013, 59: 432-439. |
25 | Xin Y B, Sun B, Zhu X M, et al. Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge[J]. Energy, 2021, 214: 118902. |
26 | Gao Y, Zhang S, Sun H, et al. Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges[J]. Applied Energy, 2018, 226: 534-545. |
27 | Moshrefi M M, Rashidi F. Hydrogen production from methane by DC spark discharge: effect of current and voltage[J]. Journal of Natural Gas Science and Engineering, 2014, 16: 85-89. |
28 | Sun B, Zhao X T, Xin Y B, et al. Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24047-24054. |
29 | Akande O, Lee B, Okolie J A, et al. Hydrogen-rich syngas generation through microwave plasma reforming of greenhouse gases[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34649-34658. |
30 | Xin Y B, Wang Q L, Sun J B, et al. Plasma in aqueous methanol: influence of plasma initiation mechanism on hydrogen production[J]. Applied Energy, 2022, 325: 119892. |
31 | Tachibana K, Takekata Y, Mizumoto Y, et al. Analysis of a pulsed discharge within single bubbles in water under synchronized conditions[J]. Plasma Sources Science and Technology, 2011, 20(3): 034005. |
32 | Tian W, Tachibana K, Kushner M J. Plasmas sustained in bubbles in water: optical emission and excitation mechanisms[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055202. |
33 | Fridman A, Nester S, Kennedy L, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1998, 25(2): 211-231. |
34 | Jaiswal A K, Ananthanarasimhan J, Shivapuji A M, et al. Experimental investigation of a non-catalytic cold plasma water-gas shift reaction[J]. Journal of Physics D Applied Physics, 2020, 53(46): 465205. |
35 | Florkowska B, Wlodek R. Pulse height analysis of partial discharges in air[J]. IEEE Transactions on Electrical Insulation, 1993, 28(6): 932-940. |
36 | Zhang W, Wang J F, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field[J]. Chemical Engineering Science, 2020, 215: 115451. |
37 | Götz M, Lefebvre J, Mörs F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
38 | Wang Q Y, Wang Y Y, Sun J B, et al. Hydrogen production from simulated seawater by microwave liquid discharge: a new way of green production[J]. Chemical Engineering Journal, 2023, 465: 142872. |
39 | Wang B W, Cheng Y, Wang C Y, et al. Steam reforming of methane in a gliding arc discharge reactor to produce hydrogen and its chemical kinetics study[J]. Chemical Engineering Science, 2022, 253: 117560. |
40 | Zhang H, Li X D, Zhu F S, et al. Non-oxidative decomposition of methanol into hydrogen in a rotating gliding arc plasma reactor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15901-15912. |
[1] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[2] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[3] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[4] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[5] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[6] | Xinxin XU, Yunli JI, Xianfeng WU, Xia AN, Xu WU. Hydrotalcite-derived CuMgFe-LDO catalyst for simultaneous abatement of nitrogen oxides and methanol [J]. CIESC Journal, 2024, 75(5): 1890-1902. |
[7] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[8] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[9] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[10] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[11] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[12] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[13] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[14] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[15] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||