CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1697-1704.DOI: 10.11949/0438-1157.20231383
• Energy and environmental engineering • Previous Articles Next Articles
Jin ZHANG1(), Zhibin GUO2, Laiming LUO1, Shanfu LU1(), Yan XIANG1
Received:
2023-12-28
Revised:
2024-03-30
Online:
2024-06-06
Published:
2024-04-25
Contact:
Shanfu LU
张劲1(), 郭志斌2, 罗来明1, 卢善富1(), 相艳1
通讯作者:
卢善富
作者简介:
张劲(1987—),男,副教授,zhangjin1@buaa.edu.cn
基金资助:
CLC Number:
Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system[J]. CIESC Journal, 2024, 75(4): 1697-1704.
张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704.
Add to citation manager EndNote|Ris|BibTeX
编号 | 发电 功率/kW | 发电量/ (kW·h) | 甲醇水溶液消耗量/kg | 甲醇水溶液单耗/ (kg/(kW·h)) |
---|---|---|---|---|
1 | 0.40 | 0.20 | 0.25 | 1.25 |
2 | 0.83 | 1.12 | 1.10 | 0.98 |
3 | 1.50 | 0.68 | 0.60 | 0.88 |
4 | 1.80 | 0.50 | 0.45 | 0.90 |
5 | 2.06 | 0.68 | 0.55 | 0.81 |
6 | 2.20 | 0.70 | 0.60 | 0.86 |
Table 1 Methanol consumption and electricity generation of MSR/HT-PEMFC system
编号 | 发电 功率/kW | 发电量/ (kW·h) | 甲醇水溶液消耗量/kg | 甲醇水溶液单耗/ (kg/(kW·h)) |
---|---|---|---|---|
1 | 0.40 | 0.20 | 0.25 | 1.25 |
2 | 0.83 | 1.12 | 1.10 | 0.98 |
3 | 1.50 | 0.68 | 0.60 | 0.88 |
4 | 1.80 | 0.50 | 0.45 | 0.90 |
5 | 2.06 | 0.68 | 0.55 | 0.81 |
6 | 2.20 | 0.70 | 0.60 | 0.86 |
编号 | 浓度/% | 系统运行状态 | ||||
---|---|---|---|---|---|---|
H2 | O2 | N2 | CO | CO2 | ||
1 | 0.00 | 19.1 | 79.3 | 0.00 | 2.26 | 开机 |
2 | 0.00 | 20.4 | 78.7 | 0.00 | 1.65 | 5 A |
3 | 0.00 | 19.8 | 78.6 | 0.00 | 2.27 | 10 A |
4 | 0.00 | 19.8 | 78.4 | 0.00 | 2.44 | 20 A |
5 | 0.00 | 18.7 | 78.6 | 0.00 | 3.45 | 30 A |
Table 2 Composition of emission gas in MSR/HT-PEMFC under different operating current
编号 | 浓度/% | 系统运行状态 | ||||
---|---|---|---|---|---|---|
H2 | O2 | N2 | CO | CO2 | ||
1 | 0.00 | 19.1 | 79.3 | 0.00 | 2.26 | 开机 |
2 | 0.00 | 20.4 | 78.7 | 0.00 | 1.65 | 5 A |
3 | 0.00 | 19.8 | 78.6 | 0.00 | 2.27 | 10 A |
4 | 0.00 | 19.8 | 78.4 | 0.00 | 2.44 | 20 A |
5 | 0.00 | 18.7 | 78.6 | 0.00 | 3.45 | 30 A |
1 | Aili D, Henkensmeier D, Martin S, et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. |
2 | Wang S Y, Jiang S P. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4(2): 163-166. |
3 | Zhao Z C, Yao X L, Hou G J. Reaction pathways of methanol reforming over Pt/α-MoC catalysts revealed by in situ high-pressure MAS NMR[J]. ACS Catalysis, 2023, 13(12): 7978-7986. |
4 | Yan X Q, Wang S D, Li X Y, et al. A 75-kW methanol reforming fuel cell system[J]. Journal of Power Sources, 2006, 162(2): 1265-1269. |
5 | Seselj N, Aili D, Celenk S, et al. Performance degradation and mitigation of high temperature polybenzimidazole-based polymer electrolyte membrane fuel cells[J]. Chemical Society Reviews, 2023, 52(12): 4046-4070. |
6 | 张振国, 张奇, 张劲, 等. 燃料电池用宽温域质子交换膜研究进展[J]. 武汉大学学报 (理学版), 2023, 69(4): 476-491. |
Zhang Z G, Zhang Q, Zhang J, et al. Progress in wide-temperature-range proton exchange membranes for fuel cells[J]. Journal of Wuhan University (Natural Science Edition), 2023, 69(4): 476-491. | |
7 | Meyer Q, Yang C J, Cheng Y, et al. Overcoming the electrode challenges of high-temperature proton exchange membrane fuel cells[J]. Electrochemical Energy Reviews, 2023, 6(1): 16. |
8 | 卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572. |
Lu S F, Xu X, Zhang J, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica Chimica, 2017, 47(5): 565-572. | |
9 | Schmidt T J, Baurmeister J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode[J]. Journal of Power Sources, 2008, 176(2): 428-434. |
10 | 张巨佳, 张劲, 王海宁, 等. 高温聚合物电解质膜燃料电池膜电极中磷酸分布及调控策略研究进展[J]. 物理化学学报, 2021, 37(9): 172-186. |
Zhang J J, Zhang J, Wang H N, et al. Advancement in distribution and control strategy of phosphoric acid in membrane electrode assembly of high-temperature polymer electrolyte membrane fuel cells[J]. Acta Physico-Chimica Sinica, 2021, 37(9): 172-186. | |
11 | 相艳, 李文, 郭志斌, 等. 磷酸掺杂型高温质子交换膜燃料电池关键材料研究进展[J]. 北京航空航天大学学报, 2022, 48(9): 1791-1805. |
Xiang Y, Li W, Guo Z B, et al. Research progress on key materials of phosphoric acid doped high-temperature proton exchange membrane fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1791-1805. | |
12 | 赵伟辰, 徐鑫, 白慧娟, 等. 自交联聚乙烯亚胺-聚砜高温质子交换膜研究[J]. 化学学报, 2020, 78(1): 69-75. |
Zhao W C, Xu X, Bai H J, et al. Self-crosslinked polyethyleneimine-polysulfone membrane for high temperature proton exchange membrane[J]. Acta Chimica Sinica, 2020, 78(1): 69-75. | |
13 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
Zhang J, Guo Z B, Zhang J J, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
14 | 罗来明, 陈思安, 王海宁, 等. 高温聚合物电解质膜燃料电池大尺寸 (200 cm2) 多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985. |
Luo L M, Chen S A, Wang H N, et al. Simulation and optimization of large-scale (200 cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. | |
15 | 罗来明, 张劲, 郭志斌, 等. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
Luo L M, Zhang J, Guo Z B, et al. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range[J]. CIESC Journal, 2023, 74(4): 1724-1734. | |
16 | 姬峰, 郑博文, 罗若尹, 等. 高温质子交换膜燃料电池电堆稳定性分析与优化[J]. 化工进展, 2022, 41(10): 5325-5331. |
Ji F, Zheng B W, Luo R Y, et al. Analysis and optimization of a HT-PEMFC stack[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5325-5331. | |
17 | 严文锐, 张劲, 王海宁, 等. 重整甲醇高温聚合物电解质膜燃料电池研究进展与展望[J]. 化工进展, 2021, 40(6): 2980-2992. |
Yan W R, Zhang J, Wang H N, et al. Advancement toward reforming methanol high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2980-2992. | |
18 | Lin L L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544: 80-83. |
19 | Li D D, Xu F, Tang X, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nature Catalysis, 2022, 5: 99-108. |
20 | Sun Z, Sun Z Q. Hydrogen generation from methanol reforming for fuel cell applications: a review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
21 | Chang C P, Wu Y C, Chen W Y, et al. A hybrid phosphorus-acid fuel cell system incorporated with oxidative steam reforming of methanol (OSRM) reformer[J]. Renewable Energy, 2020, 153: 530-538. |
22 | Sahlin S L, Andreasen S J, Kær S K. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13080-13089. |
23 | Mei D Q, Qiu X Y, Liu H Y, et al. Progress on methanol reforming technologies for highly efficient hydrogen production and applications[J]. International Journal of Hydrogen Energy, 2022, 47(84): 35757-35777. |
24 | Xing S, Zhao C, Ban S, et al. A hybrid fuel cell system integrated with methanol steam reformer and methanation reactor[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2565-2576. |
25 | Zhang S B, Zhang Y F, Chen J Y, et al. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use[J]. Journal of Power Sources, 2018, 389: 37-49. |
26 | Ribeirinha P, Schuller G, Boauentura M, et al. Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13902-13912. |
27 | Kappis K, Papavasiliou J, Avgouropoulos G. Methanol reforming processes for fuel cell applications[J]. Energies, 2021, 14(24): 8442. |
28 | Li N, Cui X T, Zhu J M, et al. A review of reformed methanol-high temperature proton exchange membrane fuel cell systems[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113395. |
29 | Ranjekar A M, Yadav G D. Steam reforming of methanol for hydrogen production: a critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113. |
30 | Chen Z L, Yin B F, Wei Z, et al. Coupling of high-temperature proton exchange membrane fuel cells with methanol steam reforming: modeling and simulation for an integrated coupled for power generation system[J]. Energy Conversion and Management, 2024, 301: 118044. |
[1] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[2] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[3] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[4] | Liuyang YU, Shubo LIU, Shengzhe JIA, Hang MA, Banglong WAN, Qiwen SU, Jingkang WANG, Weiwei TANG, Yujuan HE, Junbo GONG. Current status and research progress of purification technology of electronic grade phosphoric acid [J]. CIESC Journal, 2024, 75(1): 1-19. |
[5] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
[6] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[7] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[8] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[13] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[14] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[15] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||