CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 936-944.DOI: 10.11949/0438-1157.20231290
• Process system engineering • Previous Articles Next Articles
Yujiao ZENG1(), Xin XIAO1(), Gang YANG1, Yibo ZHANG1, Guangming ZHENG2, Fang LI2, Fengling WANG2
Received:
2023-12-04
Revised:
2024-02-02
Online:
2024-05-11
Published:
2024-03-25
Contact:
Xin XIAO
曾玉娇1(), 肖炘1(), 杨刚1, 张意博1, 郑光明2, 李防2, 汪凤玲2
通讯作者:
肖炘
作者简介:
曾玉娇(1985—),女,博士,副研究员,yjzeng@ipe.ac.cn
基金资助:
CLC Number:
Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven[J]. CIESC Journal, 2024, 75(3): 936-944.
曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944.
Add to citation manager EndNote|Ris|BibTeX
性能指标 | 液膜扩散控制 | 表面化学反应 | 固膜扩散控制 |
---|---|---|---|
R2最小值 | 0.8996 | 0.9294 | 0.9776 |
R2平均值 | 0.9112 | 0.9656 | 0.9881 |
R2最大值 | 0.9223 | 0.9771 | 0.9907 |
Table 1 Comparison of fitting performance of three dynamic models
性能指标 | 液膜扩散控制 | 表面化学反应 | 固膜扩散控制 |
---|---|---|---|
R2最小值 | 0.8996 | 0.9294 | 0.9776 |
R2平均值 | 0.9112 | 0.9656 | 0.9881 |
R2最大值 | 0.9223 | 0.9771 | 0.9907 |
流股 | 参数 | 模拟结果 | 工厂数据 | 误差/% |
---|---|---|---|---|
成品酸 | 质量流量 | 138.35 t/h | 136.05 t/h | 1.69 |
P2O5含量 | 39.16% | 40% | 2.10 | |
SO | 4.31% | 4% | 7.75 | |
半水返酸 | 质量流量 | 414.37 t/h | 384 t/h | 7.91 |
P2O5含量 | 32.19% | 34% | 5.32 | |
SO | 3.17% | 3% | 5.67 | |
二水料浆 | 质量流量 | 797.46 t/h | 760.2 t/h | 4.90 |
P2O5含量 | 12.03% | 11% | 9.36 | |
SO | 4.47% | 5% | 10.60 | |
二水石膏 | 质量流量 | 376.95 t/h | 370 t/h | 1.88 |
P2O5含量 | 0.68% | 0.75% | 9.33 | |
CaSO4含量 | 88% | 92% | 4.35 | |
含液量 | 16.55% | 18% | 8.06 |
Table 2 Comparison between simulated and actual values of Aspen Plus
流股 | 参数 | 模拟结果 | 工厂数据 | 误差/% |
---|---|---|---|---|
成品酸 | 质量流量 | 138.35 t/h | 136.05 t/h | 1.69 |
P2O5含量 | 39.16% | 40% | 2.10 | |
SO | 4.31% | 4% | 7.75 | |
半水返酸 | 质量流量 | 414.37 t/h | 384 t/h | 7.91 |
P2O5含量 | 32.19% | 34% | 5.32 | |
SO | 3.17% | 3% | 5.67 | |
二水料浆 | 质量流量 | 797.46 t/h | 760.2 t/h | 4.90 |
P2O5含量 | 12.03% | 11% | 9.36 | |
SO | 4.47% | 5% | 10.60 | |
二水石膏 | 质量流量 | 376.95 t/h | 370 t/h | 1.88 |
P2O5含量 | 0.68% | 0.75% | 9.33 | |
CaSO4含量 | 88% | 92% | 4.35 | |
含液量 | 16.55% | 18% | 8.06 |
模型 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | |
SVR | 0.1754 | 0.5771 | 0.9868 | 0.2689 | 0.6854 | 0.9758 |
ANN | 0.7821 | 0.9406 | 0.9172 | 0.7636 | 0.9281 | 0.8957 |
RF | 0.1523 | 0.1369 | 0.9982 | 0.1678 | 0.1773 | 0.9964 |
Table 3 Performance evaluation of surrogate models on the training and testing sets
模型 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | |
SVR | 0.1754 | 0.5771 | 0.9868 | 0.2689 | 0.6854 | 0.9758 |
ANN | 0.7821 | 0.9406 | 0.9172 | 0.7636 | 0.9281 | 0.8957 |
RF | 0.1523 | 0.1369 | 0.9982 | 0.1678 | 0.1773 | 0.9964 |
变量 | 参数名称 | 波动范围 | 基础案例 | 优化方案 |
---|---|---|---|---|
X1 | Fin,sa/(kg/h) | 90~120 | 90 | 112 |
X2 | β1 | 1~6 | 1 | 2.6 |
X3 | β2 | 1~6 | 1 | 1.3 |
X4 | ΔT1/℃ | 2~20 | 10 | 12 |
X5 | β3 | 1~6 | 1 | 1.4 |
X6 | ΔT2/℃ | 2~20 | 10 | 10 |
X7 | Fin,wa/(kg/h) | 80~160 | 90 | 100 |
成品酸中P2O5含量/% | 38 | 37.5 | ||
成品酸SO | 4 | 4.31 | ||
成品酸质量流量/(kg/h) | 112 | 115.09 | ||
磷收率/% | 86.7 | 98.51 |
Table 4 Optimization results of decision variables under the objective of maximizing phosphorus yield
变量 | 参数名称 | 波动范围 | 基础案例 | 优化方案 |
---|---|---|---|---|
X1 | Fin,sa/(kg/h) | 90~120 | 90 | 112 |
X2 | β1 | 1~6 | 1 | 2.6 |
X3 | β2 | 1~6 | 1 | 1.3 |
X4 | ΔT1/℃ | 2~20 | 10 | 12 |
X5 | β3 | 1~6 | 1 | 1.4 |
X6 | ΔT2/℃ | 2~20 | 10 | 10 |
X7 | Fin,wa/(kg/h) | 80~160 | 90 | 100 |
成品酸中P2O5含量/% | 38 | 37.5 | ||
成品酸SO | 4 | 4.31 | ||
成品酸质量流量/(kg/h) | 112 | 115.09 | ||
磷收率/% | 86.7 | 98.51 |
变量 | 参数名称 | 波动范围 | 方案1 | 方案2 | 方案3 |
---|---|---|---|---|---|
X1 | Fin,sa/(kg/h) | 90~120 | 112 | 113.27 | 94.05 |
X2 | β1 | 1~6 | 2.6 | 3.1 | 1.645 |
X3 | β2 | 1~6 | 1.3 | 2.73 | 1.4 |
X4 | ΔT1/℃ | 1~20 | 12 | 15 | 10 |
X5 | β3 | 1~6 | 1.4 | 2.1 | 1.8 |
X6 | ΔT2/℃ | 2~20 | 10 | 12 | 10 |
X7 | Fin,wa/(kg/h) | 80~160 | 100 | 110 | 105 |
成品酸中P2O5浓度/% | 37.5 | 40.56 | 39.76 | ||
成品酸中SO | 4.31 | 4.98 | 3.98 | ||
成品酸质量流量/(kg/h) | 115.09 | 110.24 | 112.21 | ||
磷收率/% | 98. 51 | 98.76 | 96.71 |
Table 5 Comparison of optimization results of three product schemes
变量 | 参数名称 | 波动范围 | 方案1 | 方案2 | 方案3 |
---|---|---|---|---|---|
X1 | Fin,sa/(kg/h) | 90~120 | 112 | 113.27 | 94.05 |
X2 | β1 | 1~6 | 2.6 | 3.1 | 1.645 |
X3 | β2 | 1~6 | 1.3 | 2.73 | 1.4 |
X4 | ΔT1/℃ | 1~20 | 12 | 15 | 10 |
X5 | β3 | 1~6 | 1.4 | 2.1 | 1.8 |
X6 | ΔT2/℃ | 2~20 | 10 | 12 | 10 |
X7 | Fin,wa/(kg/h) | 80~160 | 100 | 110 | 105 |
成品酸中P2O5浓度/% | 37.5 | 40.56 | 39.76 | ||
成品酸中SO | 4.31 | 4.98 | 3.98 | ||
成品酸质量流量/(kg/h) | 115.09 | 110.24 | 112.21 | ||
磷收率/% | 98. 51 | 98.76 | 96.71 |
1 | 王昕, 邹文敏, 李志刚, 等. 供给侧改革视域下的磷化工转型升级路径[J]. 化肥设计, 2018, 56(3): 12-15. |
Wang X, Zou W M, Li Z G, et al. Then transformation and upgrading path of phosphorus chemical industry against the backdrop of supply-side reform[J]. Chemical Fertilizer Design, 2018, 56(3): 12-15. | |
2 | 杨培发, 陈军民, 陈志华. 我国湿法磷酸生产技术对比[J]. 磷肥与复肥, 2020, 35(1): 24-26. |
Yang P F, Chen J M, Chen Z H. Comparison of WPA production technology in China[J]. Phosphate & Compound Fertilizer, 2020, 35(1): 24-26. | |
3 | 张金菊, 姚启才, 张坤, 等. 自动滴定仪测定湿法磷酸中五氧化二磷含量的方法[J]. 硫磷设计与粉体工程, 2022, 167(2): 19-21. |
Zhang J J, Yao Q C, Zhang K, et al. Method for determining phosphorus pentoxide content in wet-process phosphoric acid by automatic titrator[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2022, 167(2): 19-21. | |
4 | Mathias P M, Chen C C, Walters M. Modeling the complex chemical reactions and mass transfer in a phosphoric acid reactor[C] //Proceedings of the Joint China/USA Chemical Engineering Conference. USA: Aspen Technology Inc. Ten Canal Park Cambridge, 2000: 657-664. |
5 | Grema A S, Imam Y Y, Mohammed H I. Modeling and simulation of hemihydrate phosphoric acid plant[J]. Arid Zone Journal of Engineering, Technology and Environment, 2018, 14(2): 169-171. |
6 | 王典. 基于Aspen Plus的二水法湿法磷酸工艺模拟[J]. 硫磷设计与粉体工程, 2020(1): 18-21, 4. |
Wang D. Aspen Plus-based simulation for dihydrate wet-process phosphoric acid process[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2020(1): 18-21, 4. | |
7 | Papadopoulos A I, Seferlis P. Generic modelling, design and optimization of industrial phosphoric acid production processes[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 493-506. |
8 | Bouchkira I, Latifi A M, Khamar L, et al. Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process[J]. Computers & Chemical Engineering, 2022, 156: 107536. |
9 | Bouchkira I, Latifi A M, Khamar L, et al. Global sensitivity based estimability analysis for the parameter identification of Pitzer's thermodynamic model[J]. Reliability Engineering & System Safety, 2021, 207: 107263. |
10 | Aguel S, Meddeb Z, Jeday M R. Parametric study and modeling of cross-flow heat exchanger fouling in phosphoric acid concentration plant using artificial neural network[J]. Journal of Process Control, 2019, 84: 133-145. |
11 | 卢建刚, 王学飞, 孙优贤, 等. 湿法磷酸生产过程中反应槽料浆磷酸浓度的软测量方法: 103091458B[P]. 2014-12-10. |
Lu J G, Wang X F, Sun Y X, et al. Soft measurement method for reaction tank slurry phosphoric acid concentration in wet phosphoric acid production process: 103091458B[P]. 2014-12-10. | |
12 | Bichri A, Kamzon M A, Abderafi S. Artificial neural network to predict the performance of the phosphoric acid production[J]. Procedia Computer Science, 2020, 177: 444-449. |
13 | Bichri A, Kamzon M A, Abderafi S. Modelling and optimization of P2O5 losses in phosphoric acid attack and filtration process[J]. Materials Today: Proceedings, 2022, 51: 1998-2004. |
14 | Bradley W, Kim J, Kilwein Z, et al. Perspectives on the integration between first-principles and data-driven modeling[J]. Computers & Chemical Engineering, 2022, 166: 107898. |
15 | Sansana J, Joswiak M N, Castillo I, et al. Recent trends on hybrid modeling for Industry 4.0[J]. Computers & Chemical Engineering, 2021, 151: 107365. |
16 | 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. |
Yao Y C, Qiu P, Xu J L, et al. Modeling of entrained-bed gasifier based on hybrid model[J]. CIESC Journal, 2021, 72(5): 2727-2734. | |
17 | 戚子豪, 钟文琪, 陈曦, 等. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
Qi Z H, Zhong W Q, Chen X, et al. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling[J]. CIESC Journal, 2022, 73(5): 2039-2051. | |
18 | 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507. |
Ye Z C, Zhou H L, Rao D B. Hybrid modeling and optimization of acetylene hydrogenation process[J]. CIESC Journal, 2019, 70(2): 496-507. | |
19 | Li J, Suvarna M, Pan L J, et al. A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification[J]. Applied Energy, 2021, 304: 117674. |
20 | Wang W R, Ma Y J, Maroufmashat A, et al. Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework[J]. Applied Energy, 2022, 305: 117751. |
21 | Fang H Q, Zhou J Z, Wang Z Y, et al. Hybrid method integrating machine learning and particle swarm optimization for smart chemical process operations[J]. Frontiers of Chemical Science and Engineering, 2022, 16(2): 274-287. |
22 | 柏静儒, 李启凡, 吴海涛, 等. 基于Aspen Plus用户模型技术的油页岩热解过程模拟[J]. 化工进展, 2017, 36(5): 1682-1689. |
Bai J R, Li Q F, Wu H T, et al. Simulation of oil shale pyrolysis using Aspen Plus user model[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1682-1689. | |
23 | Frikha N, Hmercha A, Gabsi S. Modelling of a solid dissolution in liquid with chemical reaction: application to the attack reaction of phosphate by sulphuric acid[J]. The Canadian Journal of Chemical Engineering, 2014, 92(10): 1829-1838. |
24 | Mgaidi A, Mokni H. Mathematical modeling of the dissolution of phosphate rock into various acidic medium[J]. Hydrometallurgy, 2018, 182: 27-31. |
25 | Soussi-Baatout A, Brahim K, Khattech I, et al. Thermochemical and kinetic investigations of the phosphoric attack of Tunisian phosphate ore[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 3121-3132. |
26 | Peng Y, Zhu Z L, Braatz R D, et al. Gypsum crystallization during phosphoric acid production: modeling and experiments using the mixed-solvent-electrolyte thermodynamic model[J]. Industrial & Engineering Chemistry Research, 2015, 54(32): 7914-7924. |
27 | Preturlan J G D, Vieille L, Quiligotti S, et al. Kinetics and mechanism of the dehydration of calcium sulfate dihydrate: a comprehensive approach for studying the dehydration of ionic hydrates under controlled temperature and water vapor pressure[J]. The Journal of Physical Chemistry C, 2020, 124(48): 26352-26367. |
28 | Tang S, Ji Y H, Ge K. Crystallization kinetics and mechanisms of calcium sulfate dihydrate: experimental investigation and theoretical analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21676-21684. |
29 | Jones M N, Frutiger J, Ince N G, et al. The Monte Carlo driven and machine learning enhanced process simulator[J]. Computers & Chemical Engineering, 2019, 125: 324-338. |
30 | 赵会媛. 湿法磷酸生产中磷矿分解的影响因素研究[J]. 磷肥与复肥, 2016, 31(6): 21-23. |
Zhao H Y. Research of influence factors of phosphate rock decomposition in wet-process phosphoric acid production[J]. Phosphate & Compound Fertilizer, 2016, 31(6): 21-23. | |
31 | 念吉红. 提高磷酸磷收率的措施[J]. 盐科学与化工, 2019, 48(3): 38-39. |
Nian J H. Measures to improve the yield of phosphorus phosphate[J]. Journal of Salt Science and Chemical Industry, 2019, 48(3): 38-39. | |
32 | Davis S E, Cremaschi S, Eden M R. Efficient surrogate model development: impact of sample size and underlying model dimensions[C]//13th International Symposium on Process Systems Engineering (PSE 2018). Amsterdam: Elsevier, 2018: 979-984. |
[1] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[2] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[3] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[4] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[14] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||