CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2533-2543.DOI: 10.11949/0438-1157.20240181
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yin WANG(), Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG(
), Shengping WANG, Xinbin MA
Received:
2024-02-18
Revised:
2024-04-25
Online:
2024-08-09
Published:
2024-07-25
Contact:
Shouying HUANG
王寅(), 初鹏飞, 刘虎, 吕静, 黄守莹(
), 王胜平, 马新宾
通讯作者:
黄守莹
作者简介:
王寅(1999—),男,硕士研究生,wangyin@tju.edu.cn
基金资助:
CLC Number:
Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation[J]. CIESC Journal, 2024, 75(7): 2533-2543.
王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543.
样品 | SBET/ (m2/g) | SMicropore/ (m2/g) | SMesopore/ (m2/g) | VTotalpore/ (cm3/g) | VMicropore/ (cm3/g) | VMesopore/ (cm3/g) |
---|---|---|---|---|---|---|
MOR | 561 | 538 | 23 | 0.33 | 0.21 | 0.12 |
MOR-BH | 511 | 435 | 76 | 0.36 | 0.17 | 0.19 |
MOR-3.7 | 507 | 454 | 53 | 0.35 | 0.17 | 0.17 |
MOR-4.1 | 493 | 437 | 56 | 0.36 | 0.17 | 0.18 |
MOR-4.9 | 487 | 418 | 70 | 0.36 | 0.16 | 0.20 |
MOR-7.7 | 451 | 401 | 50 | 0.33 | 0.17 | 0.17 |
Table 1 Textural properties of parent and shaped catalyet
样品 | SBET/ (m2/g) | SMicropore/ (m2/g) | SMesopore/ (m2/g) | VTotalpore/ (cm3/g) | VMicropore/ (cm3/g) | VMesopore/ (cm3/g) |
---|---|---|---|---|---|---|
MOR | 561 | 538 | 23 | 0.33 | 0.21 | 0.12 |
MOR-BH | 511 | 435 | 76 | 0.36 | 0.17 | 0.19 |
MOR-3.7 | 507 | 454 | 53 | 0.35 | 0.17 | 0.17 |
MOR-4.1 | 493 | 437 | 56 | 0.36 | 0.17 | 0.18 |
MOR-4.9 | 487 | 418 | 70 | 0.36 | 0.16 | 0.20 |
MOR-7.7 | 451 | 401 | 50 | 0.33 | 0.17 | 0.17 |
样品 | F/(N/cm) | m | R2 | F10%/(N/cm) |
---|---|---|---|---|
MOR-BH | 128.6±24.4 | 5.2 | 0.87 | 114.4 |
MOR-3.7 | 82.1±11.8 | 4.8 | 0.94 | 74.2 |
MOR-4.1 | 87.5±14.6 | 4.8 | 0.82 | 77.5 |
MOR-4.9 | 110.7±14.8 | 5.3 | 0.87 | 102.9 |
MOR-7.7 | 80.8±14.6 | 4.2 | 0.87 | 67.9 |
Table 2 Statistics of strength data for the shaped MOR
样品 | F/(N/cm) | m | R2 | F10%/(N/cm) |
---|---|---|---|---|
MOR-BH | 128.6±24.4 | 5.2 | 0.87 | 114.4 |
MOR-3.7 | 82.1±11.8 | 4.8 | 0.94 | 74.2 |
MOR-4.1 | 87.5±14.6 | 4.8 | 0.82 | 77.5 |
MOR-4.9 | 110.7±14.8 | 5.3 | 0.87 | 102.9 |
MOR-7.7 | 80.8±14.6 | 4.2 | 0.87 | 67.9 |
样品 | Si(0Al)/% | Si(0Al)/% | Si(1Al)/% | Si(2Al)/% | Si/Al① |
---|---|---|---|---|---|
MOR | 2.2 | 66.2 | 28.8 | 2.8 | 11.6 |
MOR-BH | 2.5 | 69.7 | 25.8 | 2.0 | 13.4 |
MOR-3.7 | 3.0 | 68.9 | 26.1 | 2.1 | 13.2 |
MOR-4.1 | 3.2 | 68.6 | 26.1 | 2.1 | 13.2 |
MOR-4.9 | 2.8 | 67.3 | 26.2 | 3.8 | 11.8 |
MOR-7.7 | 2.2 | 67.6 | 27.3 | 2.9 | 12.1 |
Table 3 The de-convolution results of 29Si MAS NMR profiles
样品 | Si(0Al)/% | Si(0Al)/% | Si(1Al)/% | Si(2Al)/% | Si/Al① |
---|---|---|---|---|---|
MOR | 2.2 | 66.2 | 28.8 | 2.8 | 11.6 |
MOR-BH | 2.5 | 69.7 | 25.8 | 2.0 | 13.4 |
MOR-3.7 | 3.0 | 68.9 | 26.1 | 2.1 | 13.2 |
MOR-4.1 | 3.2 | 68.6 | 26.1 | 2.1 | 13.2 |
MOR-4.9 | 2.8 | 67.3 | 26.2 | 3.8 | 11.8 |
MOR-7.7 | 2.2 | 67.6 | 27.3 | 2.9 | 12.1 |
样品 | Btotal/ (μmol/g) | B12-MR/ (μmol/g) | B8-MR/ (μmol/g) | B8-MR/ B12-MR① | B8-MR/ B12-MR② |
---|---|---|---|---|---|
MOR | 1320 | 641 | 678 | 1.1 | 1.1 |
MOR-BH | 1156 | 571 | 584 | 1.0 | 1.1 |
MOR-3.7 | 1173 | 584 | 588 | 1.0 | 1.1 |
MOR-4.1 | 1174 | 585 | 589 | 1.0 | 1.1 |
MOR-4.9 | 1297 | 633 | 664 | 1.1 | 1.1 |
MOR-7.7 | 1274 | 618 | 666 | 1.1 | 1.1 |
Table 4 The amounts of acid for parent and shaped MOR
样品 | Btotal/ (μmol/g) | B12-MR/ (μmol/g) | B8-MR/ (μmol/g) | B8-MR/ B12-MR① | B8-MR/ B12-MR② |
---|---|---|---|---|---|
MOR | 1320 | 641 | 678 | 1.1 | 1.1 |
MOR-BH | 1156 | 571 | 584 | 1.0 | 1.1 |
MOR-3.7 | 1173 | 584 | 588 | 1.0 | 1.1 |
MOR-4.1 | 1174 | 585 | 589 | 1.0 | 1.1 |
MOR-4.9 | 1297 | 633 | 664 | 1.1 | 1.1 |
MOR-7.7 | 1274 | 618 | 666 | 1.1 | 1.1 |
Fig.15 Conversion of DME and selectivity to MA of the parent and shaped catalysts (reaction conditions: 200℃, 1.5 MPa, DME/CO molar ratio 1/49, 9000 h-1)
1 | Boronat M, Martínez-Sánchez C, Law D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
2 | Rasmussen D B, Christensen J M, Temel B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264. |
3 | Li X J, Liu X H, Liu S L, et al. Activity enhancement of ZSM-35 in dimethyl ether carbonylation reaction through alkaline modifications[J]. RSC Advances, 2013, 3(37): 16549-16557. |
4 | Zhou H, Zhu W L, Shi L, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
5 | Goldemberg J. Ethanol for a sustainable energy future[J]. Science, 2007, 315(5813): 808-810. |
6 | 宋庆锋, 张勇, 曾清湖. 合成气直接转化制乙醇工艺路线的技术经济分析[J]. 工业催化, 2013, 21(6): 17-21. |
Song Q F, Zhang Y, Zeng Q H. Techno-economic analysis of production process of syngas to ethanol[J]. Industrial Catalysis, 2013, 21(6): 17-21. | |
7 | 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503. |
Wang H, Wu Z L, Tai Z J, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503. | |
8 | Li Y, Huang S Y, Cheng Z Z, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256: 117777. |
9 | 黄守莹, 王悦, 吕静, 等. 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展[J]. 化工学报, 2016, 67(1): 240-247. |
Huang S Y, Wang Y, Lü J, et al. Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate[J]. CIESC Journal, 2016, 67(1): 240-247. | |
10 | Yang G H, San X G, Jiang N, et al. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catalysis Today, 2011, 164(1): 425-428. |
11 | Fujimoto K, Shikada T, Omata K, et al. Vapor phase carbonylation of methanol with solid acid catalysts[J]. Chemistry Letters, 1984, 13(12): 2047-2050. |
12 | Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1617-1620. |
13 | He T, Liu X C, Xu S T, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22526-22531. |
14 | Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344. |
15 | Li B J, Xu J, Han B, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in situ solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5840-5847. |
16 | Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123. |
17 | Cheng Z Z, Huang S Y, Li Y, et al. Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: comparative investigation of deactivation behavior[J]. Applied Catalysis A: General, 2019, 576: 1-10. |
18 | He T, Ren P J, Liu X C, et al. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chemical Communications, 2015, 51(94): 16868-16870. |
19 | Wang M X, Huang S Y, Lv J, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1537. |
20 | Li Y, Yu M, Qi G D, et al. Designing a mordenite catalyst with enhanced acidity for dimethyl ether carbonylation by engineering open Sn sites[J]. Engineering, DOI: 10.1016/j.eng.2023.01.020 . |
21 | Cai K, Huang S Y, Li Y, et al. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2027-2034. |
22 | Li Y, Yu M, Cai K, et al. Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation[J]. Physical Chemistry Chemical Physics, 2020, 22(20): 11374-11381. |
23 | Blasco T, Boronat M, Concepción P, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center[J]. Angewandte Chemie International Edition, 2007, 46(21): 3938-3941. |
24 | Li Y, Huang S Y, Cheng Z Z, et al. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR[J]. Journal of Catalysis, 2018, 365: 440-449. |
25 | He P, Li Y, Cai K, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
26 | Xue H F, Huang X M, Ditzel E, et al. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515. |
27 | Liu S P, Cheng Z Z, Li Y, et al. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13861-13869. |
28 | Wang X S, Li R J, Yu C C, et al. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous and Mesoporous Materials, 2019, 274: 227-235. |
29 | Liu Y H, Zhao N, Xian H, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8398-8403. |
30 | Ma M, Huang X M, Zhan E S, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
31 | Li Y, Sun Q, Huang S Y, et al. Dimethyl ether carbonylation over pyridine-modified MOR: enhanced stability influenced by acidity[J]. Catalysis Today, 2018, 311: 81-88. |
32 | Wu D F, Zhou J C, Li Y D. Distribution of the mechanical strength of solid catalysts[J]. Chemical Engineering Research and Design, 2006, 84(12): 1152-1157. |
33 | Wu D F, Tang M L. Effects of process factors on extrusion of hierarchically porous ZSM-5 zeolite[J]. Powder Technology, 2019, 352: 79-90. |
34 | Vajglov Z, Kumar N, Mäki-Arvela P, et al. Synthesis and physicochemical characterization of shaped catalysts of β and Y zeolites for cyclization of citronellal[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18084-18096. |
35 | 黄守莹, 熊雄, 贺培, 等. 二甲醚羰基化丝光沸石成型催化剂黏结剂的研究[J]. 化工学报, 2020, 71(10): 4642-4651. |
Huang S Y, Xiong X, He P, et al. Study on binder of extruded mordenite catalyst for dimethyl ether carbonylation[J]. CIESC Journal, 2020, 71(10): 4642-4651. | |
36 | Chu P F, Liu H, Cai K, et al. Influence of pseudoboehmite on the performance of shaped mordenite catalyst for dimethyl ether carbonylation[J]. Chemical Engineering Science, 2023, 272: 118607. |
37 | Zhang L N, Liu H Y, Yue Y Y, et al. Design and in situ synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins[J]. Catalysis Science & Technology, 2019, 9(22): 6438-6451. |
38 | Lakiss L, Gilson J P, Valtchev V, et al. Zeolites in a good shape: catalyst forming by extrusion modifies their performances[J]. Microporous and Mesoporous Materials, 2020, 299: 110114. |
39 | Michels N L, Mitchell S, Pérez-Ramírez J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons[J]. ACS Catalysis, 2014, 4(8): 2409-2417. |
40 | Liu B N, Zhu X C, Zhao J, et al. A study into the γ-Al2O3 binder influence on nano-H-ZSM-5 via scaled-up laboratory methanol-to-hydrocarbon reaction[J]. Catalysts, 2021, 11(10): 1140. |
41 | Eschenbacher A, Jensen P A, Henriksen U B, et al. Deoxygenation of wheat straw fast pyrolysis vapors using HZSM-5, Al2O3, HZSM-5/Al2O3 extrudates, and desilicated HZSM-5/Al2O3 extrudates[J]. Energy & Fuels, 2019, 33(7): 6405-6420. |
42 | Ebrahimi A, Haghighi M, Aghamohammadi S. Single vs. dual-binder surface design of spray-dried Si-Al-sol-bound Kaolin-matrixed SAPO-34 nanocatalyst for conversion of methanol to light-olefins in fluidized bed reactor[J]. Microporous and Mesoporous Materials, 2022, 332: 111714. |
43 | Zhang Y W, Zhou Y M, Qiu A D, et al. Effect of alumina binder on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2006, 45(7): 2213-2219. |
44 | Lee Y J, Kim Y W, Viswanadham N, et al. Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction[J]. Applied Catalysis A: General, 2010, 374(1/2): 18-25. |
45 | Devyatkov S Y, Zinnurova A A, Aho A, et al. Shaping of sulfated zirconia catalysts by extrusion: understanding the role of binders[J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6595-6606. |
46 | Li Y, Li Z H, Huang S Y, et al. Morphology-dependent catalytic performance of mordenite in carbonylation of dimethyl ether: enhanced activity with high c/b ratio[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24000-24005. |
47 | Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
48 | Dib E, Costa I M, Vayssilov G N, et al. Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations[J]. Journal of Materials Chemistry A, 2021, 9(48): 27347-27352. |
49 | Barbera K, Bonino F, Bordiga S, et al. Structuredeactivation relationship for ZSM-5 catalysts governed by framework defects[J]. Journal of Catalysis, 2011, 280(2): 196-205. |
50 | Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
[1] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[2] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[3] | Jingru HUANG, Jiaxuan CHEN, Qunfeng ZHANG, Jin RUAN, Lai ZHU, Guanghua YE, Xinggui ZHOU. Effect of ZSM-5 zeolite structure on the reaction performance of benzene alkylation: a computational study [J]. CIESC Journal, 2024, 75(7): 2544-2555. |
[4] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[5] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[6] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[7] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[8] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[9] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[10] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[11] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[12] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[13] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[14] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[15] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||