CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1735-1749.DOI: 10.11949/0438-1157.20231191
• Reviews and monographs • Previous Articles Next Articles
Yu DING1(), Changze YANG1, Jun LI2, Huidong SUN2, Hui SHANG1()
Received:
2023-11-17
Revised:
2024-03-20
Online:
2024-06-25
Published:
2024-05-25
Contact:
Hui SHANG
通讯作者:
商辉
作者简介:
丁禹(1994—),男,博士研究生,dingyucup@outlook.com
CLC Number:
Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts[J]. CIESC Journal, 2024, 75(5): 1735-1749.
丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749.
Add to citation manager EndNote|Ris|BibTeX
位点 | 第一次加氢/(kJ/mol) | 第二次加氢/(kJ/mol) | 第一次碳硫键断裂/(kJ/mol) | 路径 | 文献 |
---|---|---|---|---|---|
MoS2角位 | 68.76 | 39.52 | 125.96 | HYD(PH) | [ |
MoS2角位 | 68.76 | 39.52 | 200.18 | HYD(FH) | [ |
MoS2角位 | 68.76 | 49.50 | 72.76 | DDS | [ |
CoMoS硫边 | 42.45 | 0 | 161.13 | HYD | [ |
CoMoS硫边 | 42.45 | 92.63 | 60.79 | DDS | [ |
MoS2硫边 | 77.19 | 0.00 | 79.12 | HYD | [ |
MoS2钼边 | 55.00 | 0.00 | 109.03 | HYD | [ |
MoS2硫边 | 77.19 | — | 20.26 | DDS | [ |
MoS2钼边 | 55.00 | — | 106.13 | DDS | [ |
NiMoS硫边 | 94.56 | 98.41 | 50.17 | DDS | [ |
Table 1 Hydrogenation and carbon-sulfur bond-breaking energy barriers at the active sites
位点 | 第一次加氢/(kJ/mol) | 第二次加氢/(kJ/mol) | 第一次碳硫键断裂/(kJ/mol) | 路径 | 文献 |
---|---|---|---|---|---|
MoS2角位 | 68.76 | 39.52 | 125.96 | HYD(PH) | [ |
MoS2角位 | 68.76 | 39.52 | 200.18 | HYD(FH) | [ |
MoS2角位 | 68.76 | 49.50 | 72.76 | DDS | [ |
CoMoS硫边 | 42.45 | 0 | 161.13 | HYD | [ |
CoMoS硫边 | 42.45 | 92.63 | 60.79 | DDS | [ |
MoS2硫边 | 77.19 | 0.00 | 79.12 | HYD | [ |
MoS2钼边 | 55.00 | 0.00 | 109.03 | HYD | [ |
MoS2硫边 | 77.19 | — | 20.26 | DDS | [ |
MoS2钼边 | 55.00 | — | 106.13 | DDS | [ |
NiMoS硫边 | 94.56 | 98.41 | 50.17 | DDS | [ |
12 | Toulhoat H, Raybaud P. Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors[J]. Journal of Catalysis, 2003, 216(1/2): 63-72. |
13 | Guernalec N, Geantet C, Raybaud P, et al. Dual effect of H2S on volcano curves in hydrotreating sulfide catalysis[J]. Oil & Gas Science and Technology, 2006, 61(4): 515-525. |
14 | Niquillerothlisberger A, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene and dibenzothiophene over alumina-supported Pt, Pd, and Pt-Pd catalysts[J]. Journal of Catalysis, 2006, 242(1): 207-216. |
15 | Lacroix M, Boutarfa N, Guillard C, et al. Hydrogenating properties of unsupported transition metal sulphides[J]. Journal of Catalysis, 1989, 120(2): 473-477. |
16 | Afanasiev P, Bezverkhyy I. Ternary transition metals sulfides in hydrotreating catalysis[J]. Applied Catalysis A: General, 2007, 322: 129-141. |
17 | Delosreyes J A, Vrinat M, Geantet C, et al. Supported ternary sulfide phases: characterization and catalytic properties of alumina-supported Ni x Ru1- x S2 [J]. Journal of Catalysis, 1993, 142(2): 455-464. |
18 | Chen S, Pan Y. Noble metal interlayer-doping enhances the catalytic activity of 2H-MoS2 from first-principles investigations[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21040-21049. |
19 | Lauritsen J V, Nyberg M, Vang R T, et al. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters[J]. Nanotechnology, 2003, 14(3): 385-389. |
20 | Kibsgaard J, Lauritsen J V, Laegsgaard E, et al. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst[J]. Journal of the American Chemical Society, 2006, 128(42): 13950-13958. |
21 | Walton A S, Lauritsen J V, Topsøe H, et al. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy[J]. Journal of Catalysis, 2013, 308: 306-318. |
22 | Bai X W, Li Q, Shi L, et al. Edge promotion and basal plane activation of MoS2 catalyst by isolated Co atoms for hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2020, 350: 56-63. |
23 | Li R, Zhu H Y, Liu D Y, et al. Density functional theory study of S-edge structures, thiophene adsorption, and hydrodesulfurization mechanisms on triangular MoS2 nanoclusters[J]. Catalysis Letters. 2024, 154(4): 1385-1397. |
24 | Mom R V, Louwen J N, Frenken J W M, et al. In situ observations of an active MoS2 model hydrodesulfurization catalyst[J]. Nature Communications, 2019, 10(1): 2546. |
25 | Nogueira A, Znaiguia R, Uzio D, et al. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: synthesis and HDS catalytic properties[J]. Applied Catalysis A: General, 2012, 429/430: 92-105. |
26 | Wang C M, Tsai T C, Wang I. Deep hydrodesulfurization over Co/Mo catalysts supported on oxides containing vanadium[J]. Journal of Catalysis, 2009, 262(2): 206-214. |
27 | Toledo-Antonio J A, Cortes-Jacome M A, Escobar-Aguilar J, et al. Upgrading HDS activity of MoS2 catalysts by chelating thioglycolic acid to MoO x supported on alumina[J]. Applied Catalysis B: Environmental, 2017, 213: 106-117. |
28 | Kang X, Liu J C, Tian C G, et al. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization[J]. Nano Research, 2020, 13(3): 882-890. |
29 | van Haandel L, Longo A, Bras W, et al. Activation of Co-Mo-S hydrodesulfurization catalysts under refinery conditions—a combined SAXS/XAS study[J]. ChemCatChem, 2019, 11(20): 5013-5017. |
30 | Lauritsen J V, Kibsgaard J, Olesen G H, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
31 | Zheng P, Li T S, Chi K B, et al. DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions[J]. Applied Catalysis B: Environmental, 2019, 257: 117937. |
32 | Grønborg S S, Salazar N, Bruix A, et al. Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters[J]. Nature Communications, 2018, 9(1): 2211. |
33 | Zheng M, Zhao L, Cao L Y, et al. Catalysis performance of nonpromoted and Co-promoted MoS2 catalysts on a hydrodesulfurization reaction: a DFT study[J]. Molecular Catalysis, 2019, 467: 38-51. |
34 | Moses P G, Hinnemann B, Topsøe H, et al. The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: a density functional study[J]. Journal of Catalysis, 2009, 268(2): 201-208. |
35 | Ramos M, Berhault G, Ferrer D A, et al. HRTEM and molecular modeling of the MoS2-Co9S8 interface: understanding the promotion effect in bulk HDS catalysts[J]. Catalysis Science & Technology, 2012, 2(1): 164-178. |
36 | Zhang L, Chen Z M, Zheng S F, et al. Effect of the Co/Mo ratio on the morphology and activity of the CoMo catalyst supported on MgO nanosheets in dibenzothiophene hydrodesulfurization[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12338-12351. |
37 | Liu B, Liu L, Chai Y M, et al. Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 441-450. |
38 | Gonzalez G A, Alvarado M, Ramos M A, et al. Transition states energies for catalytic hydrodesulfurization reaction in Co9S8/MoS2 theoretical interface using computer-assisted simulations[J]. Computational Materials Science, 2016, 121: 240-247. |
39 | Hadj-Aïssa A, Dassenoy F, Geantet C, et al. Solution synthesis of core-shell Co9S8@MoS2 catalysts[J]. Catalysis Science & Technology, 2016, 6(13): 4901-4909. |
40 | Dinter N, Rusanen M, Raybaud P, et al. Temperature-programed reduction of unpromoted MoS2-based hydrodesulfurization catalysts: experiments and kinetic modeling from first principles[J]. Journal of Catalysis, 2009, 267(1): 67-77. |
41 | Shang H, Wang T Y, Zhang W H. Sulfur vacancy formation at different MoS2 edges during hydrodesulfurization process: a DFT study[J]. Chemical Engineering Science, 2019, 195: 208-217. |
42 | Cristol S, Paul J, Schovsbo C, et al. DFT study of thiophene adsorption on molybdenum sulfide[J]. Journal of Catalysis, 2006, 239(1): 145-153. |
43 | Zheng P, Duan A J, Chi K B, et al. Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: a DFT study[J]. Chemical Engineering Science, 2017, 164: 292-306. |
44 | Salazar N, Rangarajan S, Rodríguez-Fernández J, et al. Site-dependent reactivity of MoS2 nanoparticles in hydrodesulfurization of thiophene[J]. Nature Communications, 2020, 11: 4369. |
45 | Sánchez-Delgado R A. Breaking C—S bonds with transition metal complexes. A review of molecular approaches to the study of the mechanisms of the hydrodesulfurization reaction[J]. Journal of Molecular Catalysis, 1994, 86(1/2/3): 287-307. |
46 | Lauritsen J V, Nyberg M, Nørskov J K, et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J]. Journal of Catalysis, 2004, 224(1): 94-106. |
47 | Farag H, Sakanishi K, Kouzu M, et al. Dual character of H2S as promoter and inhibitor for hydrodesulfurization of dibenzothiophene[J]. Catalysis Communications, 2003, 4(7): 321-326. |
1 | Aas W, Mortier A, Bowersox V, et al. Global and regional trends of atmospheric sulfur[J]. Scientific Reports, 2019, 9: 953. |
2 | Zhong Q R, Shen H Z, Yun X, et al. Global sulfur dioxide emissions and the driving forces[J]. Environmental Science & Technology, 2020, 54(11): 6508-6517. |
3 | Barreca A I, Neidell M, Sanders N J. Long-run pollution exposure and mortality: evidence from the Acid Rain Program[J]. Journal of Public Economics, 2021, 200: 104440. |
4 | 黎明. 7部委: 2019年1月1日起全面供应"国Ⅵ"车用汽、柴油[J]. 商用汽车, 2019(1): 8. |
Li M. 7 ministries and commissions: from January 1, 2019, the gasoline and diesel for “National Ⅵ” vehicles will be fully supplied[J]. Commercial Vehicle, 2019(1): 8. | |
5 | 王杰广, 濮仲英, 马爱增. 连续重整催化剂严重硫中毒和积炭案例分析[J]. 炼油技术与工程, 2015, 45(9): 56-60. |
Wang J G, Pu Z Y, Ma A Z. Case study on severe sulfur poisoning and carbon deposition of CCR catalyst[J]. Petroleum Refinery Engineering, 2015, 45(9): 56-60. | |
6 | 吴建民, 孙启文, 张宗森, 等. 钴基费托合成催化剂硫中毒热力学分析[J]. 化学工程, 2020, 48(7): 48-52. |
Wu J M, Sun Q W, Zhang Z S, et al. Thermodynamics analysis of sulfur poisoning over cobalt-based Fischer-Tropsch synthesis catalyst[J]. Chemical Engineering (China), 2020, 48(7): 48-52. | |
7 | 肖健. 重整催化剂硫中毒的深入剖析[J]. 石化技术, 2023, 30(10): 16-18. |
Xiao J. Deep analysis of sulfur poisoning in reforming catalyst[J]. Petrochemical Industry Technology, 2023, 30(10): 16-18. | |
8 | 孙克宁, 陈谦, 聂明明, 等. 重整催化剂的抗硫性能研究进展[J]. 化工学报, 2020, 71(9): 4131-4140. |
Sun K N, Chen Q, Nie M M, et al. Progress in the sulfur resistance of reforming catalysts[J]. CIESC Journal, 2020, 71(9): 4131-4140. | |
9 | Pecoraro T A, Chianelli R R. Hydrodesulfurization catalysis by transition metal sulfides[J]. Journal of Catalysis, 1981, 67(2): 430-445. |
10 | Toulhoat H, Raybaud P. Catalysis by Transition Metal Sulphides: From Molecular Theory to Industrial Application[M]. Paris: Technip, 2013: 3-13. |
11 | Nørskov J K, Clausen B S, Topsøe H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides[J]. Catalysis Letters, 1992, 13(1): 1-8. |
48 | Kabe T, Aoyama Y, Wang D H, et al. Effects of H2S on hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene on alumina-supported NiMo and NiW catalysts[J]. Applied Catalysis A: General, 2001, 209(1/2): 237-247. |
49 | Farag H, Sakanishi K, Mochida I, et al. Kinetic analyses and inhibition by naphthalene and H2S in hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) over CoMo-based carbon catalyst[J]. Energy & Fuels, 1999, 13(2): 449-453. |
50 | Gates B C, Topsøe H. Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Polyhedron, 1997, 16(18): 3213-3217. |
51 | Hermann N, Brorson M, Topsøe H. Activities of unsupported second transition series metal sulfides for hydrodesulfurization of sterically hindered 4,6-dimethyldibenzothiophene and of unsubstituted dibenzothiophene[J]. Catalysis Letters, 2000, 65(4): 169-174. |
52 | Duayne Whitehurst D, Isoda T, Mochida I. Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds[J]. Advances in Catalysis, 1998, 42: 345-471. |
53 | Fan Y, Shi G, Liu H Y, et al. Morphology tuning of supported MoS2 slabs for selectivity enhancement of fluid catalytic cracking gasoline hydrodesulfurization catalysts[J]. Applied Catalysis B: Environmental, 2009, 91(1): 73-82. |
54 | Liu X D, Wei Q, Huang W B, et al. DFT insights into the stacking effects on HDS of 4,6-DMDBT on Ni-Mo-S corner sites[J]. Fuel, 2020, 280: 118669. |
55 | Moses P, Hinnemann B, Topsoe H, et al. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study[J]. Journal of Catalysis, 2007, 248(2): 188-203. |
56 | Ding S J, Jiang S J, Zhou Y S, et al. Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization—a mechanism study based on DFT calculations[J]. Journal of Catalysis, 2017, 345: 24-38. |
57 | Li S, Liu Y B, Feng X, et al. Insights into the reaction pathway of thiophene hydrodesulfurization over corner site of MoS2 catalyst: a density functional theory study[J]. Molecular Catalysis, 2019, 463: 45-53. |
58 | Zheng M, Zhao L, Cao L Y, et al. The combined DFT and microkinetics methods to investigate the favorite sulfur vacancies of Co(Ni)MoS2 catalysts for maximizing HDS/HYDO selectivity[J]. Applied Catalysis B: Environmental, 2020, 277: 119242. |
59 | Zheng M, Zhao L, Cao L, et al. Insights into the HDS/HYDO selectivity with considering stacking effect of Co-MoS2 catalysts by combined DFT and microkinetic method[J]. Fuel, 2021, 300: 120941. |
60 | Asua J M, Delmon B. Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Applied Catalysis, 1984, 12(2): 249-262. |
61 | 李学辉. 氧化铝形貌结构控制与MoS2活性相的构建[D]. 东营: 中国石油大学(华东), 2016. |
Li X H. Morphology and structure control of alumina supports and construction of MoS2 active phase[D]. Dongying: China University of Petroleum, 2016. | |
62 | Liu L H, Liu S Q, Yin H L, et al. Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 708-713. |
63 | Bettahar M M. The hydrogen spillover effect: a misunderstanding story[J]. Catalysis Reviews, 2022, 64(1): 87-125. |
64 | Sun H X, Sun H Y, Zhang X Y, et al. Effect of divalent tin on the SnSAPO-5 molecular sieve and its modulation to alumina support to form a highly efficient NiW catalyst for deep hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. ACS Catalysis, 2019, 9(8): 6613-6623. |
65 | Zheng P, Hu D, Meng Q, et al. Influence of support acidity on the HDS performance over β-SBA-16 and Al-SBA-16 substrates: a combined experimental and theoretical study[J]. Energy & Fuels, 2019, 33(2): 1479-1488. |
66 | Han W, Nie H, Long X Y, et al. Effects of the support Brønsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts[J]. Catalysis Today, 2017, 292: 58-66. |
67 | Leydier F, Chizallet C, Chaumonnot A, et al. Brønsted acidity of amorphous silica-alumina: the molecular rules of proton transfer[J]. Journal of Catalysis, 2011, 284(2): 215-229. |
68 | Candia R, Sørensen O, Jør Villadsen, et al. Effect of sulfiding temperature on activity and structures of Co-Mo/Al2O3 catalysts (Ⅱ)[J]. Bulletin des Sociétés Chimiques Belges, 1984, 93(8/9): 763-774. |
69 | Hensen E J M, De Beer V H J, Van Veen J A R, et al. A refinement on the notion of type Ⅰ and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catalysis Letters, 2002, 84(1): 59-67. |
70 | Sahu A, Steinmann S N, Raybaud P. Genesis of MoS2 from model-Mo-oxide precursors supported on γ-alumina[J]. Journal of Catalysis, 2022, 408: 303-315. |
71 | Wang X L, Fan J Y, Zhao Z, et al. Hydro-upgrading performance of fluid catalytic cracking diesel over different crystal forms of alumina-supported CoMo catalysts[J]. Energy & Fuels, 2017, 31(7): 7456-7463. |
72 | Shi G, Han W, Yuan P, et al. Sulfided Mo/Al2O3 hydrodesulfurization catalyst prepared by ethanol-assisted chemical deposition method[J]. Chinese Journal of Catalysis, 2013, 34(4): 659-666. |
73 | He S, Huang T, Fan Y. Tetradecylamine-induced assembly of Mo and Al precursors to prepare efficient NiMoS/Al2O3 catalysts for ultradeep hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2022, 317: 121801. |
74 | Bara C, Plais L, Larmier K, et al. Aqueous-phase preparation of model HDS catalysts on planar alumina substrates: support effect on Mo adsorption and sulfidation[J]. Journal of the American Chemical Society, 2015, 137(50): 15915-15928. |
75 | 蒋宗轩, 孟淑纯, 于雅琴, 等. 钼酸根与γ-Al2O3表面羟基相互作用的定性和定量研究[J]. 催化学报, 1994, 15(5): 387-391. |
Jiang Z X, Meng S C, Yu Y Q, et al. Qualitative and quantitative study on the interaction between molybdate and hydroxyl group on γ-Al2O3 surface[J]. Chinese Journal of Catalysis, 1994, 15(5): 387-391. | |
76 | Hu S L, Li W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365. |
77 | Zhang P F, Mu F J, Zhou Y S, et al. Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2023, 423: 112716. |
78 | Zhou W W, Yang L, Liu L, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2020, 268: 118428. |
79 | 岳源源, 郑晓桂, 康颖, 等. 基于镁铝水滑石的Mo/Al2O3-MgO催化剂制备及其加氢脱硫性能[J]. 化工学报, 2018, 69(1): 405-413. |
Yue Y Y, Zheng X G, Kang Y, et al. Mo/Al2O3-MgO catalyst preparation from MgAl-hydrotalcite and their hydrogenation desulfurization performance[J]. CIESC Journal, 2018, 69(1): 405-413 | |
80 | Tavizón Pozos J A, Esquivel G C, Cervantes Arista I, et al. Co-processing of hydrodeoxygenation and hydrodesulfurization of phenol and dibenzothiophene with NiMo/Al2O3-ZrO2 and NiMo/TiO2-ZrO2 catalysts[J]. International Journal of Chemical Reactor Engineering, 2022, 20(1): 47-60. |
[1] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[2] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[3] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[4] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[5] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[6] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[7] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[8] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[9] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[10] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[11] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[12] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[13] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[14] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[15] | Xin ZHANG, Yu XUE, Yixing MA, Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU. Purification mechanism of hydrogen cyanide by corona discharge and dielectric barrier discharge [J]. CIESC Journal, 2024, 75(2): 675-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||