CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3320-3328.DOI: 10.11949/0438-1157.20240125
• Material science and engineering, nanotechnology • Previous Articles
Yachao LIU(), Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO(
)
Received:
2024-01-29
Revised:
2024-05-20
Online:
2024-10-10
Published:
2024-09-25
Contact:
Qingshan ZHAO
刘亚超(), 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山(
)
通讯作者:
赵青山
作者简介:
刘亚超(1997—),女,硕士研究生,13518629974@163.com
基金资助:
CLC Number:
Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction[J]. CIESC Journal, 2024, 75(9): 3320-3328.
刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328.
Fig.2 TEM images of CoCO3 (a), CoCO3-PEG (b), CoCO3-EG (c) and CoCO3-Gly (d); HRTEM images of CoCO3 (e), CoCO3-PEG (f), CoCO3-EG (g) and CoCO3-Gly (h); EDX overlap and element mapping profiles of CoCO3-Gly (i)
Fig.4 XPS survey spectra (a); high-resolution XPS C 1s spectra (b), O 1s spectra (c) and Co 2p spectra (d) of CoCO3, CoCO3-PEG, CoCO3-EG and CoCO3-Gly
Fig.5 OER polarization curves of CoCO3, CoCO3-PEG, CoCO3-EG, CoCO3-Gly and RuO2 (a); Tafel plots of CoCO3, CoCO3-PEG, CoCO3-EG, CoCO3-Gly and RuO2 (b)
Fig.6 Cyclic voltammograms of CoCO3 (a), CoCO3-PEG (b), CoCO3-EG (c) and CoCO3-Gly (d) in the region of 1.02—1.22 V (vs RHE) with different scan rates (20, 40, 60, 80, 100 and 120 mV·s-1); capacitive currents against scan rate and corresponding Cdl value of CoCO3, CoCO3-PEG, CoCO3-EG and CoCO3-Gly catalysts at 1.12 V (e); EIS Nyquist plots of CoCO3, CoCO3-PEG, CoCO3-EG and CoCO3-Gly (f)
Fig.7 Long-time stability test of CoCO3 (a), CoCO3-PEG (b), CoCO3-EG (c) and CoCO3-Gly (d) at a constant voltage for 24 h LSV curves of CoCO3 (e), CoCO3-PEG (f), CoCO3-EG (g) and CoCO3-Gly (h) before and after 3000 CV scans
1 | Le P A, Trung V D, Nguyen P L, et al. The current status of hydrogen energy: an overview[J]. RSC Advances, 2023, 13(40): 28262-28287. |
2 | Chen L, Wang H Y, Tian W W, et al. Enabling internal electric field in heterogeneous nanosheets to significantly accelerate alkaline hydrogen electrocatalysis[J]. Small, 2024, 20(18): e2307252. |
3 | Liao P S, Kang J W, Zhong Y C, et al. Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production[J]. Science China Chemistry, 2023, 66(7): 1924-1939. |
4 | Deng B H, Yu G Q, Zhao W, et al. A self-circulating pathway for the oxygen evolution reaction[J]. Energy & Environmental Science, 2023, 16(11): 5210-5219. |
5 | Hou Z Q, Cui C H, Li Y N, et al. Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction[J]. Advanced Materials, 2023, 35(39): e2209876. |
6 | Li H X, Han X, Zhao W, et al. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction[J]. Materials Horizons, 2022, 9(7): 1788-1824. |
7 | Zhang X, Yi H, An Q, et al. Recent advances in engineering cobalt carbonate hydroxide for enhanced alkaline water splitting[J]. Journal of Alloys and Compounds, 2021, 887: 161405. |
8 | Chen Y Q, Mao J N, Zhou H, et al. Coordination shell dependent activity of cuco diatomic catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reaction[J]. Advanced Functional Materials, 2024, 34(10): 2311664. |
9 | Pan J B, Liu X, Wang B H, et al. Conductive MOFs coating on hematite photoanode for activity boost via surface state regulation[J]. Applied Catalysis B: Environmental, 2022, 315: 121526. |
10 | Pan J B, Wang B H, Shen S, et al. Introducing bidirectional axial coordination into BiVO4@metal phthalocyanine core-shell photoanodes for efficient water oxidation[J]. Angewandte Chemie International Edition, 2023, 62(38): e202307246. |
11 | Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
12 | Prabhune A, Dey R. Green and sustainable solvents of the future: deep eutectic solvents[J]. Journal of Molecular Liquids, 2023, 379: 121676. |
13 | Zhang C Y, Fu Y Q, Gao W, et al. Deep eutectic solvent-mediated electrocatalysts for water splitting[J]. Molecules, 2022, 27(22): 8098. |
14 | Makoś-Chełstowska P, Kaykhaii M, Płotka-Wasylka J, et al. Magnetic deep eutectic solvents—fundamentals and applications[J]. Journal of Molecular Liquids, 2022, 365: 120158. |
15 | Abbott A, Barron J, Ryder K, et al. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chemistry-A European Journal, 2007, 13(22): 6495-6501. |
16 | Rachiero G P, Berton P, Shamshina J. Deep eutectic solvents: alternative solvents for biomass-based waste valorization[J]. Molecules, 2022, 27(19): 6606. |
17 | Płotka-Wasylka J, de la Guardia M, Andruch V, et al. Deep eutectic solvents vs ionic liquids: similarities and differences[J]. Microchemical Journal, 2020, 159: 105539. |
18 | 荣凯. 基于低共熔溶剂体系的电化学应用探索[D]. 合肥: 中国科学技术大学, 2020. |
Rong K. Exploration of electrochemical applications based on deep eutectic solvents[D]. Hefei: University of Science and Technology of China, 2020. | |
19 | Długosz O, Banach M. Green methods for obtaining deep eutectic solvents (DES)[J]. Journal of Cleaner Production, 2024, 434: 139914. |
20 | Ren S H, Mu T C, Wu W Z. Advances in deep eutectic solvents: new green solvents[J]. Processes, 2023, 11(7): 1920. |
21 | Długosz O. Natural deep eutectic solvents in the synthesis of inorganic nanoparticles[J]. Materials, 2023, 16(2): 627. |
22 | 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121. |
Chen Y, Mu T C. Application of deep eutectic solvents in battery and electrocatalysis[J]. CIESC Journal, 2020, 71(1): 106-121. | |
23 | El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3397-3408. |
24 | 张晨韵, 张国新, 沈璟虹, 等. 基于(类)离子液体的镍基催化剂研究进展[J]. 日用化学工业(中英文), 2023, 53(3): 316-324. |
Zhang C Y, Zhang G X, Shen J H, et al. Research progress of nickel-based catalysts mediated by (quasi) ionic liquids[J]. China Surfactant Detergent & Cosmetics, 2023, 53(3): 316-324. | |
25 | Pariiska O, Mazur D, Cherchenko K, et al. Efficient Co-N-C electrocatalysts for oxygen reduction derived from deep eutectic solvents[J]. Electrochimica Acta, 2022, 413: 140132. |
26 | Guan S Q, Xu B E, Wu J C, et al. High-entropy materials based on deep eutectic solvent for boosting oxygen evolution reaction[J]. Fuel, 2024, 358: 130315. |
27 | Zhang C Y, Xin B W, Chen T T, et al. Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction[J]. Green Energy & Environment, 2022, 7(6): 1217-1227. |
28 | Samage A, Pramoda K, Halakarni M, et al. One-step rapid conversion of electroactive comno nanostructures using a deep eutectic solvent as the template, solvent, and source[J]. ACS Applied Energy Materials, 2023, 6(4): 2412-2422. |
29 | Zhang Y C, Han C D, Gao J, et al. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review[J]. ACS Catalysis, 2021, 11(20): 12485-12509. |
30 | Wei Y H, Jiang J Y, Dong J L, et al. Designable synthesis of reactive deep eutectic solvents (RDES) in regulating Ni-based materials for an efficient oxygen evolution reaction[J]. Green Chemistry, 2022, 24(20): 8014-8020. |
31 | Zhang D L, Mou H Y, Lu F, et al. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting[J]. Applied Catalysis B: Environmental, 2019, 254: 471-478. |
32 | Zhang D, Mou H, Chen L, et al. Surface/interface engineering N-doped carbon/NiS2 nanosheets for efficient electrocatalytic H2O splitting[J]. Nanoscale, 2020, 12(5): 3370-3376. |
33 | Liu S, Zhang C, Zhang B, et al. All-in-one deep eutectic solvent toward cobalt-based electrocatalyst for oxygen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8964-8971. |
34 | Pan J B, Wang B H, Wang J B, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angewandte Chemie International Edition, 2021, 60(3): 1433-1440. |
[1] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[2] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[3] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[4] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[5] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[6] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[7] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[8] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[9] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[10] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[11] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[12] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[13] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[15] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||