CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2322-2331.DOI: 10.11949/0438-1157.20240238
• Surface and interface engineering • Previous Articles Next Articles
Runlong LI(), Tong XU, Fei CHEN, Chengwei MA(
)
Received:
2024-03-01
Revised:
2024-04-09
Online:
2024-07-03
Published:
2024-06-25
Contact:
Chengwei MA
通讯作者:
马成伟
作者简介:
李润龙(1997—),男,硕士研究生,632402468@qq.com
基金资助:
CLC Number:
Runlong LI, Tong XU, Fei CHEN, Chengwei MA. Lithium metal anode interface thermal distribution evolution mechanism[J]. CIESC Journal, 2024, 75(6): 2322-2331.
李润龙, 徐童, 陈飞, 马成伟. 锂金属负极界面热量分布演化机理[J]. 化工学报, 2024, 75(6): 2322-2331.
参数 | 数值 |
---|---|
矩形长度/μm | 500 |
矩形宽度/μm | 190 |
凸起长度/μm | 10 |
凸起宽度/μm | 10 |
SEI厚度/μm | 2 |
Table 1 Geometric model parameters
参数 | 数值 |
---|---|
矩形长度/μm | 500 |
矩形宽度/μm | 190 |
凸起长度/μm | 10 |
凸起宽度/μm | 10 |
SEI厚度/μm | 2 |
参数 | 数值 |
---|---|
最大单元大小/μm | 18.5 |
最小单元大小/μm | 0.0625 |
曲率因子 | 0.1 |
最大单元增长率 | 1.5 |
预定义大小 | 较细化 |
定制单元大小 | 定制 |
狭窄区域分辨率 | 1 |
Table 2 Mesh size parameters
参数 | 数值 |
---|---|
最大单元大小/μm | 18.5 |
最小单元大小/μm | 0.0625 |
曲率因子 | 0.1 |
最大单元增长率 | 1.5 |
预定义大小 | 较细化 |
定制单元大小 | 定制 |
狭窄区域分辨率 | 1 |
1 | 刘世朋. 稳定锂金属负极的构筑及其在高比能锂金属电池的应用[D]. 青岛: 青岛科技大学, 2022. |
Liu S P. Construction of stable lithium metal anodes for high energy-density lithium metal batteries[D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
2 | Zeng X Q, Li M, Abd El-Hady D, et al. Commercialization of lithium battery technologies for electric vehicles [J]. Advanced Energy Materials, 2019, 9(27): 1900161. |
3 | Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anodes for high-energy batteries[J]. Nature Nanotechnology, 2017, 12: 194-206. |
4 | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中三元正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
Guo B J, Jia L N, Zhang X. Study of ternary anode and its interface in all-solid-state lithium sulfide batteries[J]. CIESC Journal, 2024, 75(3): 743-759. | |
5 | Ma C W, Liu C C, Zhang Y X, et al. A dual lithiated alloy interphase layer for high-energy-density lithium metal batteries[J]. Chemical Engineering Journal, 2022, 434: 134637. |
6 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | Chi S S, Liu Y C, Song W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348. |
8 | Yan K, Wang J Y, Zhao S Q, et al. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes[J]. Angewandte Chemie, 2019, 131(33): 11486-11490. |
9 | Zhang Z H, Chen S J, Yang J, et al. Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode[J]. Electrochimica Acta, 2019, 297: 281-287. |
10 | Peled E, Menkin S. Review—SEI: past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
11 | He M N, Su C C, Feng Z X, et al. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte[J]. Advanced Energy Materials, 2017, 7(15): 1700109. |
12 | Yan C, Yao Y X, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angewandte Chemie, 2018, 130(43): 14251-14255. |
13 | Feng W L, Dong X L, Li P L, et al. Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer[J]. Journal of Power Sources, 2019, 419: 91-98. |
14 | Yang S J, Yao N, Jiang F N, et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells[J]. Angewandte Chemie,2022, 134(51): 2214545. |
15 | Cheng X B, Yang S J, Liu Z C, et al. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries[J]. Advanced Materials, 2024, 36(1): 2307370. |
16 | Xu X Y, Liu Y Y, Hwang J Y, et al. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): 2002390. |
17 | Gan L Y, Chen R S, Xu X L, et al. Comparative study of thermal stability of lithium metal anode in carbonate and ether based electrolytes[J]. Journal of Power Sources, 2022, 551: 232182. |
18 | 陈怡沁, 许于, 周静红, 等. 锂离子电池异构建模及内部传质机理探究:粒径分布的影响[J]. 化工学报, 2021, 72(2): 1078-1088. |
Chen Y Q, Xu Y, Zhou J H, et al. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: effect of particle size distribution[J]. CIESC Journal, 2021, 72(2): 1078-1088. | |
19 | Liu Y Y, Xu X Y, Jiao X X, et al. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte[J]. Advanced Materials, 2023, 35(24): e2301152. |
20 | Klinsmann M, Hildebrand F E, Ganser M, et al. Dendritic cracking in solid electrolytes driven by lithium insertion[J]. Journal of Power Sources, 2019, 442: 227226. |
21 | Ganser M, Hildebrand F E, Klinsmann M, et al. An extended formulation of butler-volmer electrochemical reaction kinetics including the influence of mechanics[J]. Journal of the Electrochemical Society, 2019, 166(4): H167-H176. |
22 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. |
23 | Cao X L, Lu Y J, Song X, et al. Perspective of unstable solid electrolyte interphase induced lithium dendrite growth: role of thermal effect[J]. Electrochimica Acta, 2023, 439: 141722. |
24 | Gui R J, Jin H, Wang Z H, et al. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications[J]. Chemical Society Reviews, 2018, 47(17): 6795-6823. |
25 | Yu Z, Balsara N P, Borodin O, et al. Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties[J]. ACS Energy Letters, 2022, 7(1): 461-470. |
26 | Lin S S, Hua H M, Lai P B, et al. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range[J]. Advanced Energy Materials, 2021, 11(36): 2101775. |
27 | Wu F X, Chu F L, Ferrero G A, et al. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte[J]. Nano Letters, 2020, 20(7): 5391-5399. |
28 | 黄铭浩, 王跃达, 侯倩, 等. 锂金属电池电解液的理论计算模拟研究[J]. 化学进展, 2023, 35(12): 1847-1863. |
Huang M H, Wang Y D, Hou Qet al. Theoretical calculation computational simulation on electrolyte for lithium metal battery[J]. Progress in Chemistry, 2023, 35(12): 1847-1863. | |
29 | Wang D, He T T, Wang A P, et al. A thermodynamic cycle-based electrochemical windows database of 308 electrolyte solvents for rechargeable batteries[J]. Advanced Functional Materials, 2023, 33(11): 2212342. |
30 | Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. |
31 | Hu J T, Ji Y C, Zheng G R, et al. Influence of electrolyte structural evolution on battery applications: cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): e153. |
[1] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[2] | Wentao LI, Huijuan LIN, Hai ZHONG. LiF-rich SEI generated by in-situ gel polymer electrolyte process for lithium metal rechargeable batteries [J]. CIESC Journal, 2022, 73(7): 3240-3250. |
[3] | Huakun HU, Wendong XUE, Sida HUO, Yong LI, Peng JIANG. Review of SEI film forming additives for electrolyte of lithium ion battery [J]. CIESC Journal, 2022, 73(4): 1436-1454. |
[4] | Shanshan FENG, Xiaobin LIU, Shilin GUO, Bingbing HE, Zhenguo GAO, Mingyang CHEN, Junbo GONG. Nucleation, growth and inhibition of lithium dendrites [J]. CIESC Journal, 2022, 73(1): 97-109. |
[5] | CUI Jin,SHI Chuan,ZHAO Jinbao. Research progress on the effect of mechanical pressure on the performance of lithium batteries [J]. CIESC Journal, 2021, 72(7): 3511-3523. |
[6] | Rui ZHANG, Xin SHEN, Hong YUAN, Xinbing CHENG, Jiaqi HUANG, Qiang ZHANG. Recent progress on lithium plating/stripping mechanisms in lithium metal batteries [J]. CIESC Journal, 2021, 72(12): 6144-6160. |
[7] | Rui ZHANG, Xin SHEN, Jinfu WANG, Qiang ZHANG. Plating of Li ions in 3D structured lithium metal anodes [J]. CIESC Journal, 2020, 71(6): 2688-2695. |
[8] | LI Tingliang, HUANG Wenbo, CAO Wenjiong, JIANG Fangming. Inverse modeling of EGS heat reservoir based on micro-seismic data and analysis of its heat recovery performance [J]. CIESC Journal, 2018, 69(12): 5001-5010. |
[9] | ZHONG Lixia, QIAN Yuanchao, DAI Meixue, ZHONG Yaohua. Improvement of uracil auxotrophic transformation system in Trichoderma reesei QM9414 and overexpression of β-glucosidase [J]. CIESC Journal, 2016, 67(6): 2510-2518. |
[10] | KONG Qin, FANG Hao, XIA Liming. Screening and cellulase production of recombinant Trichoderma reesei with high activity exo-β-glucanases [J]. CIESC Journal, 2014, 65(8): 3122-3127. |
[11] | QU Changlong,ZHANG Chao,CHEN Tuanhai. Analysis of measures for seismic isolation and shock absorption for LNG storage tank [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1713-1717. |
[12] | SU Rongxin, ZOU Longhua, QI Wei, WANG Mengfan, HE Zhimin. Simulation and 3D plot of molecular weight distribution of released peptides from pancreatic hydrolysis of casein [J]. CIESC Journal, 2013, 64(1): 346-351. |
[13] | CHENGuo, YAOShanjing, GUANYixin. Influence of Osmoregulators on Osmotolerant Yeast Candida krusei for the Production of Glycerol [J]. , 2006, 14(3): 371-376. |
[14] | HE Zhimin, QI Wei, HE Mingxia. A Novel Exponential Kinetic Model for Casein Tryptic Hydrolysis to Prepare Active Peptides [J]. , 2002, 10(5): 562-566. |
[15] |
WU Mianbin, XIA Liming, CEN Peilin.
Continuous Degradation of Chitosan in a Convoluted Fibrous Bed Bioreactor with Immobilized Trichoderma reesei [J]. , 2002, 10(1): 84-88. |
Viewed | ||||||
Full text 84
|
|
|||||
Abstract |
|
|||||