CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2313-2321.DOI: 10.11949/0438-1157.20231394
• Process system engineering • Previous Articles Next Articles
Han ZHANG1(), Shuning ZHANG2(
), Ke LIU1, Guanlong DENG1
Received:
2023-12-28
Revised:
2024-02-29
Online:
2024-07-03
Published:
2024-06-25
Contact:
Shuning ZHANG
通讯作者:
张淑宁
作者简介:
张晗(1999—),女,硕士研究生,1106529344@qq.com
基金资助:
CLC Number:
Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression[J]. CIESC Journal, 2024, 75(6): 2313-2321.
张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321.
变量 | 数值 |
---|---|
1089.6~1111.6 | |
1676.6~1710.4 | |
1.40 | |
温度/K | 325 |
Kb | 1.3621×104 |
Kg | 1.5840×104 |
kb/(s-1·μm-3) | 6.21×1031 |
kg/(s-1·μm) | 2.70×1014 |
Table 1 Parameter values for different variables
变量 | 数值 |
---|---|
1089.6~1111.6 | |
1676.6~1710.4 | |
1.40 | |
温度/K | 325 |
Kb | 1.3621×104 |
Kg | 1.5840×104 |
kb/(s-1·μm-3) | 6.21×1031 |
kg/(s-1·μm) | 2.70×1014 |
方法 | R2 | RMSE |
---|---|---|
RBFNN | 0.8579 | 1.2170 |
LSSVR | 0.9685 | 0.4469 |
SFA-RBFNN | 0.9739 | 0.4567 |
SFA-LSSVR | 0.9911 | 0.2384 |
Table 2 Regression results of different methods in numerical cases
方法 | R2 | RMSE |
---|---|---|
RBFNN | 0.8579 | 1.2170 |
LSSVR | 0.9685 | 0.4469 |
SFA-RBFNN | 0.9739 | 0.4567 |
SFA-LSSVR | 0.9911 | 0.2384 |
方法 | R2 | RMSE |
---|---|---|
RBFNN | 0.8496 | 0.0877 |
LSSVR | 0.8827 | 0.0736 |
SFA-RBFNN | 0.8931 | 0.0710 |
SFA-LSSVR | 0.9823 | 0.0479 |
Table 3 Regression results of different methods in the synthesis of cobalt oxalate
方法 | R2 | RMSE |
---|---|---|
RBFNN | 0.8496 | 0.0877 |
LSSVR | 0.8827 | 0.0736 |
SFA-RBFNN | 0.8931 | 0.0710 |
SFA-LSSVR | 0.9823 | 0.0479 |
1 | Chu F, Zhao X, Yao Y, et al. Transfer learning for batch process optimal control using LV-PTM and adaptive control strategy[J]. Journal of Process Control, 2019, 81: 197-208. |
2 | Zhang S N, Deng G L, Wang F L. Active learning strategy for online prediction of particle size distribution in cobalt oxalate synthesis process[J]. IEEE Access, 1809, 7: 40810-40821. |
3 | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
4 | Zhang S N, Chu F, Deng G L, et al. Soft sensor model development for cobalt oxalate synthesis process based on adaptive Gaussian mixture regression[J]. IEEE Access, 2019, 7: 118749-118763. |
5 | Yuan X F, Ge Z Q, Song Z H. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13736-13749. |
6 | Yuan X F, Wang Y L, Yang C H, et al. Probabilistic density-based regression model for soft sensing of nonlinear industrial processes[J]. Journal of Process Control, 2017, 57: 15-25. |
7 | Ren J C, Liu D, Wan Y. Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies[J]. Journal of Process Control, 2021, 104: 74-85. |
8 | Kalmár C, Turányi T, Zsély I G, et al. The importance of chemical mechanisms in sonochemical modelling[J]. Ultrasonics Sonochemistry, 2022, 83: 105925. |
9 | Chang S C, Chen X, Zhao C H. Flexible clockwork recurrent neural network for multirate industrial soft sensor[J]. Journal of Process Control, 2022, 119: 86-100. |
10 | 张雷. 基于数据驱动的复杂工业过程软测量方法研究与应用[D]. 长沙: 湖南大学, 2019. |
Zhang L. Research and application of data-driven soft sensor method for complex industrial processes[D]. Changsha: Hunan University, 2019. | |
11 | Yao L, Ge Z Q. Refining data-driven soft sensor modeling framework with variable time reconstruction[J]. Journal of Process Control, 2020, 87: 91-107. |
12 | Feng L J, Zhao C H, Huang B. Adversarial smoothing tri-regression for robust semi-supervised industrial soft sensor[J]. Journal of Process Control, 2021, 108: 86-97. |
13 | Griesing-Scheiwe F, Shardt Y A W, Perez-Zuniga G, et al. Soft sensor design for variable time delay and variable sampling time[J]. Journal of Process Control, 2020, 92: 310-318. |
14 | 田业. 面向复杂流程工业的数据驱动软测量建模研究及应用[D]. 北京: 北京化工大学, 2023. |
Tian Y. Research and application of data-driven soft sensor modeling for complex process industry[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
15 | Jade A M, Srikanth B, Jayaraman V K, et al. Feature extraction and denoising using kernel PCA[J]. Chemical Engineering Science, 2003, 58(19): 4441-4448. |
16 | Chiplunkar R, Huang B. Output relevant slow feature extraction using partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 191: 148-157. |
17 | Zamprogna E, Barolo M, Seborg D E. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis[J]. Journal of Process Control, 2005, 15(1): 39-52. |
18 | Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Analytica Chimica Acta, 1986, 185: 1-17. |
19 | Liu X Q, Li K, McAfee M, et al. Improved nonlinear PCA for process monitoring using support vector data description[J]. Journal of Process Control, 2011, 21(9): 1306-1317. |
20 | Che Y P, Zhao Z G, Wang Z G, et al. Iterative learning model predictive control for multivariable nonlinear batch processes based on dynamic fuzzy PLS model[J]. Journal of Process Control, 2022, 119: 1-12. |
21 | Chitralekha S B, Shah S L. Application of support vector regression for developing soft sensors for nonlinear processes[J]. The Canadian Journal of Chemical Engineering, 2010, 88(5): 696-709. |
22 | Alaei H K, Salahshoor K. The design of new soft sensors based on PCA and a neural network for parameters estimation of a petroleum reservoir[J]. Petroleum Science and Technology, 2012, 30(22): 2294-2305. |
23 | Mei C L, Yang M, Shu D X, et al. Soft sensor based on Gaussian process regression and its application in erythromycin fermentation process[J]. Chemical Industry and Chemical Engineering Quarterly, 2016, 22(2): 127-135. |
24 | Zhang S N, Wang F L, He D K, et al. Batch-to-batch control of particle size distribution in cobalt oxalate synthesis process based on hybrid model[J]. Powder Technology, 2012, 224: 253-259. |
25 | Jia R D, Mao Z Z, He D K, et al. Hierarchical batch-to-batch optimization of cobalt oxalate synthesis process based on data-driven model[J]. Chemical Engineering Research and Design, 2019, 144: 185-197. |
26 | Meng Y M, Yu S S, Zhang J L, et al. Hybrid modeling based on mechanistic and data-driven approaches for cane sugar crystallization[J]. Journal of Food Engineering, 2019, 257: 44-55. |
27 | Grondin-Perez B, Benne M, Damour C, et al. On-line estimation of mother liquor purity during the final stage of a cane sugar crystallization plant using neural network model[J]. International Sugar Journal, 2009, 111(1332): 751-756. |
28 | Wiskott L, Sejnowski T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4): 715-770. |
29 | Zhang M, Zhou L, Jie J, et al. Soft sensor development based on quality-relevant slow feature analysis and Bayesian regression with application to propylene polymerization[J]. Journal of Sensors, 2021, 2021: 9985747. |
30 | Corrigan J, Zhang J. Developing accurate data-driven soft-sensors through integrating dynamic kernel slow feature analysis with neural networks[J]. Journal of Process Control, 2021, 106: 208-220. |
[1] | Hongtao LI, Zhenlei WANG, Xin WANG. Improved conditional Gaussian regression soft sensor based on just-in-time learning [J]. CIESC Journal, 2024, 75(6): 2299-2312. |
[2] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[3] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[4] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[5] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[6] | Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration [J]. CIESC Journal, 2024, 75(2): 493-504. |
[7] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[8] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[9] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[10] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[11] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[12] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[13] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||