CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4629-4645.DOI: 10.11949/0438-1157.20240658
• Process system engineering • Previous Articles Next Articles
Xuejin GAO1,2,3,4(), Bolun LI1,2,3,4, Huayun HAN1,2,3,4(
), Huihui GAO1,2,3,4, Yongsheng QI5
Received:
2024-06-13
Revised:
2024-08-07
Online:
2025-01-03
Published:
2024-12-25
Contact:
Huayun HAN
高学金1,2,3,4(), 李博伦1,2,3,4, 韩华云1,2,3,4(
), 高慧慧1,2,3,4, 齐咏生5
通讯作者:
韩华云
作者简介:
高学金(1973—),男,博士,教授,gaoxuejin@bjut.edu.cn
基金资助:
CLC Number:
Xuejin GAO, Bolun LI, Huayun HAN, Huihui GAO, Yongsheng QI. Fault prediction of multivariate batch process based on multi-sampled sequence feature extraction network[J]. CIESC Journal, 2024, 75(12): 4629-4645.
高学金, 李博伦, 韩华云, 高慧慧, 齐咏生. 基于多采样序列特征提取网络的多变量间歇过程故障预测[J]. 化工学报, 2024, 75(12): 4629-4645.
编号 | 变量 | 编号 | 变量 |
---|---|---|---|
X1 | 通风速率/(L/h) | X6 | pH |
X2 | 补料温度/K | X7 | 反应温度/K |
X3 | 溶解氧浓度/(mmol/L) | X8 | 反应热/J |
X4 | 排气CO2浓度/(mmol/L) | X9 | 冷水流加速率/(L/h) |
X5 | 搅拌功率/W | X10 | 底物流加速率/(L/h) |
Table 1 Main variables of the penicillin fermentation process
编号 | 变量 | 编号 | 变量 |
---|---|---|---|
X1 | 通风速率/(L/h) | X6 | pH |
X2 | 补料温度/K | X7 | 反应温度/K |
X3 | 溶解氧浓度/(mmol/L) | X8 | 反应热/J |
X4 | 排气CO2浓度/(mmol/L) | X9 | 冷水流加速率/(L/h) |
X5 | 搅拌功率/W | X10 | 底物流加速率/(L/h) |
故障批次 | 故障变量 | 故障类型 | 幅度/% | 持续时间/h |
---|---|---|---|---|
1 | 搅拌功率 | 斜坡故障 | +0.35 | 200~400 |
2 | 搅拌功率 | 斜坡故障 | +0.3 | 200~400 |
3 | 通风速率 | 斜坡故障 | +1 | 200~400 |
4 | 底物流加速率 | 斜坡故障 | +0.025 | 200~400 |
Table 2 Fault batch information of penicillin fermentation processes
故障批次 | 故障变量 | 故障类型 | 幅度/% | 持续时间/h |
---|---|---|---|---|
1 | 搅拌功率 | 斜坡故障 | +0.35 | 200~400 |
2 | 搅拌功率 | 斜坡故障 | +0.3 | 200~400 |
3 | 通风速率 | 斜坡故障 | +1 | 200~400 |
4 | 底物流加速率 | 斜坡故障 | +0.025 | 200~400 |
批次 | 32 | 64 | 128 | 256 | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
正常批次 | 0.0070 | 0.0610 | 0.0094 | 0.0692 | 0.0078 | 0.0599 | 0.0083 | 0.0620 |
故障批次1 | 0.0285 | 0.0643 | 0.0183 | 0.0492 | 0.0169 | 0.0496 | 0.0169 | 0.0487 |
故障批次2 | 0.0287 | 0.0646 | 0.0228 | 0.0507 | 0.0195 | 0.0502 | 0.0209 | 0.0497 |
故障批次3 | 0.0083 | 0.0564 | 0.0052 | 0.0451 | 0.0046 | 0.0452 | 0.0054 | 0.0549 |
故障批次4 | 0.0081 | 0.0571 | 0.0062 | 0.0454 | 0.0052 | 0.0450 | 0.0057 | 0.0450 |
Table 3 Experimental results of embedding dimension experiments on penicillin fermentation process
批次 | 32 | 64 | 128 | 256 | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
正常批次 | 0.0070 | 0.0610 | 0.0094 | 0.0692 | 0.0078 | 0.0599 | 0.0083 | 0.0620 |
故障批次1 | 0.0285 | 0.0643 | 0.0183 | 0.0492 | 0.0169 | 0.0496 | 0.0169 | 0.0487 |
故障批次2 | 0.0287 | 0.0646 | 0.0228 | 0.0507 | 0.0195 | 0.0502 | 0.0209 | 0.0497 |
故障批次3 | 0.0083 | 0.0564 | 0.0052 | 0.0451 | 0.0046 | 0.0452 | 0.0054 | 0.0549 |
故障批次4 | 0.0081 | 0.0571 | 0.0062 | 0.0454 | 0.0052 | 0.0450 | 0.0057 | 0.0450 |
批次 | 1次采样 | 2次采样 | 3次采样 | 4次采样 | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
正常批次 | 0.0088 | 0.0655 | 0.0092 | 0.0676 | 0.0078 | 0.0599 | 0.0083 | 0.0640 |
故障批次1 | 0.0241 | 0.0596 | 0.0290 | 0.0584 | 0.0169 | 0.0496 | 0.0219 | 0.0550 |
故障批次2 | 0.0231 | 0.0588 | 0.0208 | 0.0569 | 0.0195 | 0.0502 | 0.0203 | 0.0557 |
故障批次3 | 0.0065 | 0.0528 | 0.0058 | 0.0488 | 0.0046 | 0.0452 | 0.0056 | 0.0488 |
故障批次4 | 0.0080 | 0.0532 | 0.0057 | 0.0489 | 0.0052 | 0.0450 | 0.0053 | 0.0482 |
Table 4 Experimental results of sequence sampling on penicillin fermentation process
批次 | 1次采样 | 2次采样 | 3次采样 | 4次采样 | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
正常批次 | 0.0088 | 0.0655 | 0.0092 | 0.0676 | 0.0078 | 0.0599 | 0.0083 | 0.0640 |
故障批次1 | 0.0241 | 0.0596 | 0.0290 | 0.0584 | 0.0169 | 0.0496 | 0.0219 | 0.0550 |
故障批次2 | 0.0231 | 0.0588 | 0.0208 | 0.0569 | 0.0195 | 0.0502 | 0.0203 | 0.0557 |
故障批次3 | 0.0065 | 0.0528 | 0.0058 | 0.0488 | 0.0046 | 0.0452 | 0.0056 | 0.0488 |
故障批次4 | 0.0080 | 0.0532 | 0.0057 | 0.0489 | 0.0052 | 0.0450 | 0.0053 | 0.0482 |
实验批次 | MSE | ||||||
---|---|---|---|---|---|---|---|
VAR | GBR | LSTM | LightTS | TCN | Transformer | MSFEN | |
正常批次 | 0.0408 | 0.0226 | 0.0327 | 0.0189 | 0.0324 | 0.0165 | 0.0078 |
故障批次1 | 0.3176 | 0.2069 | 0.3410 | 0.1126 | 0.0987 | 0.0320 | 0.0169 |
故障批次2 | 0.4117 | 0.2746 | 0.4882 | 0.1184 | 0.0840 | 0.0396 | 0.0195 |
故障批次3 | 0.0721 | 0.0585 | 0.0858 | 0.0667 | 0.0211 | 0.0080 | 0.0046 |
故障批次4 | 0.0744 | 0.0245 | 0.0899 | 0.0333 | 0.0167 | 0.0078 | 0.0052 |
Table 5 Comparison of MSE of the methods
实验批次 | MSE | ||||||
---|---|---|---|---|---|---|---|
VAR | GBR | LSTM | LightTS | TCN | Transformer | MSFEN | |
正常批次 | 0.0408 | 0.0226 | 0.0327 | 0.0189 | 0.0324 | 0.0165 | 0.0078 |
故障批次1 | 0.3176 | 0.2069 | 0.3410 | 0.1126 | 0.0987 | 0.0320 | 0.0169 |
故障批次2 | 0.4117 | 0.2746 | 0.4882 | 0.1184 | 0.0840 | 0.0396 | 0.0195 |
故障批次3 | 0.0721 | 0.0585 | 0.0858 | 0.0667 | 0.0211 | 0.0080 | 0.0046 |
故障批次4 | 0.0744 | 0.0245 | 0.0899 | 0.0333 | 0.0167 | 0.0078 | 0.0052 |
实验批次 | MAE | ||||||
---|---|---|---|---|---|---|---|
VAR | GBR | LSTM | LightTS | TCN | Transformer | MSFEN | |
正常批次 | 0.1450 | 0.1108 | 0.1058 | 0.0796 | 0.1138 | 0.0934 | 0.0599 |
故障批次1 | 0.1783 | 0.1378 | 0.1380 | 0.0891 | 0.0869 | 0.0667 | 0.0496 |
故障批次2 | 0.1780 | 0.1421 | 0.1438 | 0.0890 | 0.0812 | 0.0660 | 0.0502 |
故障批次3 | 0.1336 | 0.1071 | 0.1134 | 0.0837 | 0.0645 | 0.0547 | 0.0452 |
故障批次4 | 0.1544 | 0.0955 | 0.1246 | 0.0796 | 0.0686 | 0.0518 | 0.0450 |
Table 6 Comparison of MAE of the methods
实验批次 | MAE | ||||||
---|---|---|---|---|---|---|---|
VAR | GBR | LSTM | LightTS | TCN | Transformer | MSFEN | |
正常批次 | 0.1450 | 0.1108 | 0.1058 | 0.0796 | 0.1138 | 0.0934 | 0.0599 |
故障批次1 | 0.1783 | 0.1378 | 0.1380 | 0.0891 | 0.0869 | 0.0667 | 0.0496 |
故障批次2 | 0.1780 | 0.1421 | 0.1438 | 0.0890 | 0.0812 | 0.0660 | 0.0502 |
故障批次3 | 0.1336 | 0.1071 | 0.1134 | 0.0837 | 0.0645 | 0.0547 | 0.0452 |
故障批次4 | 0.1544 | 0.0955 | 0.1246 | 0.0796 | 0.0686 | 0.0518 | 0.0450 |
实验批次 | 无卷积交互模块 | 无翻转平滑Transformer | 无批次联合嵌入 | MSFEN | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
故障批次1 | 0.0229 | 0.0551 | 0.0244 | 0.0639 | 0.0251 | 0.0549 | 0.0169 | 0.0496 |
故障批次2 | 0.0323 | 0.0559 | 0.0331 | 0.0644 | 0.0331 | 0.0558 | 0.0195 | 0.0502 |
故障批次3 | 0.0065 | 0.0488 | 0.0068 | 0.0527 | 0.0063 | 0.0482 | 0.0046 | 0.0452 |
故障批次4 | 0.0072 | 0.0495 | 0.0067 | 0.0527 | 0.0068 | 0.0488 | 0.0052 | 0.0450 |
Table 7 Comparison of MSE and MAE of the Ablation experiments
实验批次 | 无卷积交互模块 | 无翻转平滑Transformer | 无批次联合嵌入 | MSFEN | ||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
故障批次1 | 0.0229 | 0.0551 | 0.0244 | 0.0639 | 0.0251 | 0.0549 | 0.0169 | 0.0496 |
故障批次2 | 0.0323 | 0.0559 | 0.0331 | 0.0644 | 0.0331 | 0.0558 | 0.0195 | 0.0502 |
故障批次3 | 0.0065 | 0.0488 | 0.0068 | 0.0527 | 0.0063 | 0.0482 | 0.0046 | 0.0452 |
故障批次4 | 0.0072 | 0.0495 | 0.0067 | 0.0527 | 0.0068 | 0.0488 | 0.0052 | 0.0450 |
1 | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
Wang Y L, Pan Y Q, Liu C L. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction[J]. CIESC Journal, 2022, 73(9): 3994-4002. | |
2 | Gu S W, Chen J H, Xie L. Few-shot learning on batch process modeling with imbalanced data[J]. Chemical Engineering Science, 2024, 285: 119560. |
3 | Sansana J, Rendall R, Joswiak M N, et al. A functional data-driven approach to monitor and analyze equipment degradation in multiproduct batch processes[J]. Process Safety and Environmental Protection, 2023, 180: 868-882. |
4 | 高学金, 姚玉卓, 韩华云, 等. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
Gao X J, Yao Y Z, Han H Y, et al. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder[J]. CIESC Journal, 2023, 74(6): 2503-2521. | |
5 | 王喆, 王建林, 李季, 等. 基于WSDPC-RVR的多模态间歇过程软测量方法[J]. 化工学报, 2023, 74(11): 4656-4669. |
Wang Z, Wang J L, Li J, et al. Multimode batch process soft sensor method based on WSDPC-RVR[J]. CIESC Journal, 2023, 74(11): 4656-4669. | |
6 | Zhou C C, Su H X, Tang X H, et al. Global self-optimizing control of batch processes[J]. Journal of Process Control, 2024, 135: 103163. |
7 | Zhang X F, Long Z, Peng J, et al. Fault prediction for electromechanical equipment based on spatial-temporal graph information[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1413-1424. |
8 | He Z L, Chen G J, Hong M N, et al. Process monitoring and fault prediction of papermaking by learning from imperfect data[J]. IEEE Transactions on Automation Science and Engineering, 2023, PP(99): 1-11. |
9 | Guo S H, Guo W H. Process monitoring and fault prediction in multivariate time series using bag-of-words[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 230-242. |
10 | Chen G, McAvoy T J. Predictive on-line monitoring of continuous processes[J]. Journal of Process Control, 1998, 8(5/6): 409-420. |
11 | Zhao C H, Gao F R. Online fault prognosis with relative deviation analysis and vector autoregressive modeling[J]. Chemical Engineering Science, 2015, 138: 531-543. |
12 | Yang Y, Bai Y, Li C, et al. Application research of ARIMA model in wind turbine gearbox fault trend prediction[C]//2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Xi'an, China, IEEE, 2018: 520-526. |
13 | Kumar L, Sripada S K, Sureka A, et al. Effective fault prediction model developed using least square support vector machine (LSSVM)[J]. Journal of Systems and Software, 2018, 137: 686-712. |
14 | Cai L, Yin H P, Lin J D, et al. An update-strategy-based Gaussian process regression method for aeroengines fault prediction[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 1941-1951. |
15 | Cheng X Z, Lv K H, Zhang Y, et al. RUL prediction method for electrical connectors with intermittent faults based on an attention-LSTM model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(5): 628-637. |
16 | Liu Y, Gan H B, Cong Y J, et al. Research on fault prediction of marine diesel engine based on attention-LSTM[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2023, 237(2): 508-519. |
17 | Liu J Q, Pan C L, Lei F, et al. Fault prediction of bearings based on LSTM and statistical process analysis[J]. Reliability Engineering & System Safety, 2021, 214: 107646. |
18 | Gao X J, Li X F, Li B L, et al. GELU-LSTM-encoder-decoder fault prediction for batch processes based on the global-local percentile method[J]. The Canadian Journal of Chemical Engineering, 2024, 102(6): 2208-2227. |
19 | Xia P C, Huang Y X, Li P, et al. Fault knowledge transfer assisted ensemble method for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1758-1769. |
20 | Qu Y P, Wang X W, Zhang X F, et al. Motor fault prediction based on fault feature extraction and signal distribution optimization[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3533314. |
21 | Zhao H Q, Chen Z, Shu X, et al. Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training[J]. Energy, 2023, 266: 126496. |
22 | Xu E B, Zou F F, Shan P P. A multi-stage fault prediction method of continuous casting machine based on Weibull distribution and deep learning[J]. Alexandria Engineering Journal, 2023, 77: 165-175. |
23 | Wang Y W, Deng L, Zheng L Y, et al. Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics[J]. Journal of Manufacturing Systems, 2021, 60: 512-526. |
24 | Li M R, Dong C Y, Xiong B Y, et al. STTEWS: a sequential-transformer thermal early warning system for lithium-ion battery safety[J]. Applied Energy, 2022, 328: 119965. |
25 | Deng F Y, Bi Y, Liu Y Q, et al. Remaining useful life prediction of machinery: a new multiscale temporal convolutional network framework[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2516913. |
26 | Liu C D, Zhang L X, Yao R, et al. Dual attention-based temporal convolutional network for fault prognosis under time-varying operating conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3512210. |
27 | Bai Y M, Zhao J S. A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis[J]. Process Safety and Environmental Protection, 2023, 169: 937-947. |
28 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016: 770-778. |
29 | Zeng A L, Chen M X, Zhang L, et al. Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121-11128. |
30 | Liu Y, Wu H X, Wang J M, et al. Non-stationary transformers: exploring the stationarity in time series forecasting[J]. Advances in Neural Information Processing Systems, 2022, 35: 9881-9893. |
31 | Lee J M, Yoo C K, Lee I B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis[J]. Journal of Biotechnology, 2004, 110(2): 119-136. |
32 | Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
33 | Zhang T P, Zhang Y Z, Cao W, et al. Less is more: fast multivariate time series forecasting with light sampling-oriented MLP structures[EB/OL]. 2022. . |
[1] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[2] | Ji LI, Jianlin WANG, Rui HE, Xinjie ZHOU, Wen WANG, Liqiang ZHAO. DBSVDD-RVR based online soft sensing for quality variables in multimode batch processes [J]. CIESC Journal, 2024, 75(9): 3231-3241. |
[3] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[4] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[5] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[6] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[7] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[8] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[9] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[10] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[11] | Wenhua LI, Hongtao YE, Wenguang LUO, Yiqi LIU. Soft sensor modeling based on MHSA-LSTM and its application in chemical process [J]. CIESC Journal, 2024, 75(12): 4654-4665. |
[12] | Yong ZHANG, Jingbo ZHAO, Limin QUAN. A prediction method for effluent ammonia nitrogen concentration based on convolutional layer and attention mechanism long short-term memory network [J]. CIESC Journal, 2024, 75(12): 4679-4688. |
[13] | Cheng ZHANG, Xue LI, Mao YE, Zhongmin LIU. Application of physics-informed neural network in two-phase flow [J]. CIESC Journal, 2024, 75(11): 3835-3856. |
[14] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[15] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||