CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3221-3230.DOI: 10.11949/0438-1157.20240334
• Process system engineering • Previous Articles Next Articles
Received:
2024-03-25
Revised:
2024-05-17
Online:
2024-10-10
Published:
2024-09-25
Contact:
Yi MAN
通讯作者:
满奕
作者简介:
赵武灵(1998—),男,硕士研究生,zwl981950@163.com
基金资助:
CLC Number:
Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder[J]. CIESC Journal, 2024, 75(9): 3221-3230.
赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230.
纳米纤维素主要分词序列 | 其余主要化学分词序列 |
---|---|
‘C1C(C(C(C(O1)O)O)O)O’, | ‘C(C(=O)O)’, ‘C(=O)C’, ‘C’, ‘[C@@]’ |
‘C1CCOC1’, ‘O1CCCC1’, ‘[O]1CCCC1’, | ‘S(=O)(=O)O’, ‘[N@@+]’, ‘[NH2+]’ |
‘OC[C@H](O)[C@@H](O)[C@H](O)CO’ | ‘[C@@H]’, ‘[OH+]’, ‘[CH2-]’ |
‘C(C1[C@H](C(C(C(O1)O)O)O)O [C@H]2C(C(C(C(O2)CO)O)O)O)O’ | ‘[P@+]’, ‘[Cl+2]’, ‘[S@@]’, ‘[Si@]’, ‘[BH3-]’, ‘CC(O)C’, ‘#’, ‘[O-]’ |
Table 1 The main word segmentation sequence of the database
纳米纤维素主要分词序列 | 其余主要化学分词序列 |
---|---|
‘C1C(C(C(C(O1)O)O)O)O’, | ‘C(C(=O)O)’, ‘C(=O)C’, ‘C’, ‘[C@@]’ |
‘C1CCOC1’, ‘O1CCCC1’, ‘[O]1CCCC1’, | ‘S(=O)(=O)O’, ‘[N@@+]’, ‘[NH2+]’ |
‘OC[C@H](O)[C@@H](O)[C@H](O)CO’ | ‘[C@@H]’, ‘[OH+]’, ‘[CH2-]’ |
‘C(C1[C@H](C(C(C(O1)O)O)O)O [C@H]2C(C(C(C(O2)CO)O)O)O)O’ | ‘[P@+]’, ‘[Cl+2]’, ‘[S@@]’, ‘[Si@]’, ‘[BH3-]’, ‘CC(O)C’, ‘#’, ‘[O-]’ |
相关模型 | 二维结构重建结果准确率 |
---|---|
HierVAE[ | 0.799 |
NC-VAE(本研究) | 0.630 |
JT-VAE[ | 0.585 |
CG-VAE[ | 0.424 |
CVAE[ | 0.215 |
Table 2 Model accuracy performance comparison
相关模型 | 二维结构重建结果准确率 |
---|---|
HierVAE[ | 0.799 |
NC-VAE(本研究) | 0.630 |
JT-VAE[ | 0.585 |
CG-VAE[ | 0.424 |
CVAE[ | 0.215 |
纳米纤维素及衍生物 | 模型目标 | 模型预测 | 准确率/% |
---|---|---|---|
磷酸化纳米 纤维素 | O=P(O)(O)OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | O=C(C((CCOC[C@H]1OCC(OC[C@@H][C@@H]O | 70.45 |
TEMPO氧化 纳米纤维素 | O=C(O)[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | O=CO[C@H][C@H]O[C@H][C@H](O[C@@H]1O | 79.49 |
磷酸化纳米 纤维素Ⅱ | O=[P@H](O)OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | C=[P@H]OO[C@H]O[C@H][C@H][C@H][C@H]C[C@H][C@H][C@H]O[C@@H]1O | 58.33 |
纳米纤维素 3,5-二甲基苯基氨基甲酸酯 | C[c:6]1[cH:1][c:2]([CH3:1])[cH:3][c:4](NC(=O)OC[C@@H]2C[C@H] (OC(=O)N[c:4]3[cH:3][c:2]([CH3:1])[cH:1][c:6](C)[cH:5]3)[C@@H] (OC(=O)N[c:4]3[cH:3][c:2]([CH3:1])[cH:1][c:6](C)[cH:5]3)[C@H](O)O2)[cH:5]O1 | O[c:6]1O[c:2]O[CH3:1]O[cH:3]OONCOOOOOCO2C[C@H]([C@H][C@H]([C@H][C@H][C@H]N[c:4]3[cH:3][C@H])[c:6]()[cH:5]3)C=)[cH:3][cH:1][c:6]()[cH:5])[C@H](O1 | 56.85 |
高碘酸氧化 纤维素 | O=CCO[C@H](CO)[C@@H](O)C=O | O=CO([C@H]O[C@H][C@H](O | 69.23 |
Table 3 Examples of partial prediction results of molecular sequences of nanocellulose and its derivatives
纳米纤维素及衍生物 | 模型目标 | 模型预测 | 准确率/% |
---|---|---|---|
磷酸化纳米 纤维素 | O=P(O)(O)OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | O=C(C((CCOC[C@H]1OCC(OC[C@@H][C@@H]O | 70.45 |
TEMPO氧化 纳米纤维素 | O=C(O)[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | O=CO[C@H][C@H]O[C@H][C@H](O[C@@H]1O | 79.49 |
磷酸化纳米 纤维素Ⅱ | O=[P@H](O)OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O | C=[P@H]OO[C@H]O[C@H][C@H][C@H][C@H]C[C@H][C@H][C@H]O[C@@H]1O | 58.33 |
纳米纤维素 3,5-二甲基苯基氨基甲酸酯 | C[c:6]1[cH:1][c:2]([CH3:1])[cH:3][c:4](NC(=O)OC[C@@H]2C[C@H] (OC(=O)N[c:4]3[cH:3][c:2]([CH3:1])[cH:1][c:6](C)[cH:5]3)[C@@H] (OC(=O)N[c:4]3[cH:3][c:2]([CH3:1])[cH:1][c:6](C)[cH:5]3)[C@H](O)O2)[cH:5]O1 | O[c:6]1O[c:2]O[CH3:1]O[cH:3]OONCOOOOOCO2C[C@H]([C@H][C@H]([C@H][C@H][C@H]N[c:4]3[cH:3][C@H])[c:6]()[cH:5]3)C=)[cH:3][cH:1][c:6]()[cH:5])[C@H](O1 | 56.85 |
高碘酸氧化 纤维素 | O=CCO[C@H](CO)[C@@H](O)C=O | O=CO([C@H]O[C@H][C@H](O | 69.23 |
1 | 李艳丽, 邢惠萍, 李玉虎. CNC、CNF及BC对纸张加固效果的比较研究[J]. 中国造纸学报, 2021, 36(3): 81-86. |
Li Y L, Xing H P, Li Y H. A comparative study on paper strengthening performance of CNC, CNF, and BC[J]. Transactions of China Pulp and Paper, 2021, 36(3): 81-86. | |
2 | Wei L Q, Agarwal U P, Hirth K C, et al. Chemical modification of nanocellulose with canola oil fatty acid methyl ester[J]. Carbohydrate Polymers, 2017, 169: 108-116. |
3 | Xie H X, Du H S, Yang X H, et al. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials[J]. International Journal of Polymer Science, 2018, 2018: 1-25. |
4 | Jiménez A, Bidare P, Hassanin H, et al. Powder-based laser hybrid additive manufacturing of metals: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(1): 63-96. |
5 | Oganov A R, Pickard C J, Zhu Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348. |
6 | Marakana P G, Dey A, Saini B. Isolation of nanocellulose from lignocellulosic biomass: synthesis, characterization, modification, and potential applications[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106606. |
7 | Kumar R, Rai B, Gahlyan S, et al. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications[J]. Express Polymer Letters, 2021, 15(2): 104-120. |
8 | Chen Z K, Bononi F C, Sievers C A, et al. UV-visible absorption spectra of solvated molecules by quantum chemical machine learning[J]. Journal of Chemical Theory and Computation, 2022, 18(8): 4891-4902. |
9 | Schleder G R, Padilha A C M, Acosta C M, et al. From DFT to machine learning: recent approaches to materials science—a review[J]. Journal of Physics: Materials, 2019, 2(3): 032001. |
10 | Ryan K, Lengyel J, Shatruk M. Crystal structure prediction via deep learning[J]. Journal of the American Chemical Society, 2018, 140(32): 10158-10168. |
11 | Chen J, Chaudhari N S. Bidirectional segmented-memory recurrent neural network for protein secondary structure prediction[J]. Soft Computing, 2006, 10(4): 315-324. |
12 | Kadurin A, Nikolenko S, Khrabrov K, et al. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico[J]. Molecular Pharmaceutics, 2017, 14(9): 3098-3104. |
13 | Kim H, Ko S, Kim B J, et al. Predicting chemical structure using reinforcement learning with a stack-augmented conditional variational autoencoder[J]. Journal of Cheminformatics, 2022, 14(1): 83. |
14 | Thakur V, Guleria A, Kumar S, et al. Recent advances in nanocellulose processing, functionalization and applications: a review[J]. Materials Advances, 2021, 2(6): 1872-1895. |
15 | Tajbakhsh N, Jeyaseelan L, Li Q, et al. Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation[J]. Medical Image Analysis, 2020, 63: 101693. |
16 | 徐飞翔, 蒋丽群, 郑安庆, 等. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172. |
Xu F X, Jiang L Q, Zheng A Q, et al. Carbon-based solid acid catalyzed the pyrolysis of cellulose to produce levoglucosan and levoglucosenone[J]. CIESC Journal, 2022, 73(3): 1166-1172. | |
17 | Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition, 1997, 30(7): 1145-1159. |
18 | 付俊俊, 田彦, 陶劲松. 纳米微晶纤维素的表面基团及其改性[J]. 中国造纸, 2018, 37(1): 50-59. |
Fu J J, Tian Y, Tao J S. The surface groups and chemical modification of nanocrystalline cellulose[J]. China Pulp & Paper, 2018, 37(1): 50-59. | |
19 | 姚一军, 王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488. |
Yao Y J, Wang H R. An overview on chemical modification of cellulose[J]. Materials Review, 2018, 32(19): 3478-3488. | |
20 | 陈子健, 唐艳军, 朱鹏, 等. 羧甲基纤维素的制备及其应用进展[J]. 中国造纸学报, 2022, 37(3): 144-154. |
Chen Z J, Tang Y J, Zhu P, et al. Progress in preparation and applications of carboxymethyl cellulose[J]. Transactions of China Pulp and Paper, 2022, 37(3): 144-154. | |
21 | 刘雄利, 王安, 王春平, 等. 纤维素纳米纤丝的制备和改性研究进展[J]. 中国造纸, 2020, 39(4): 74-83. |
Liu X L, Wang A, Wang C P, et al. Research progress in preparation and modification of cellulose nanofibril[J]. China Pulp & Paper, 2020, 39(4): 74-83. | |
22 | Yang X P, Biswas S K, Han J Q, et al. Surface and interface engineering for nanocellulosic advanced materials[J]. Advanced Materials, 2021, 33(28): 2002264. |
23 | Lian P, Yan R H, Wu Z G, et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 74. |
24 | Cai Y, Cui J, Chen M, et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(7): 2005776. |
25 | Gražulis S, Chateigner D, Downs R T, et al. Crystallography open database—an open-access collection of crystal structures[J]. Journal of Applied Crystallography, 2009, 42(4): 726-729. |
26 | Hellenbrandt M. The inorganic crystal structure database (ICSD)—present and future[J]. Crystallography Reviews, 2004, 10(1): 17-22. |
27 | Rosen A S, Iyer S M, Ray D, et al. Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery[J]. Matter, 2021, 4(5): 1578-1597. |
28 | Pareek J, Jacob J. Data Compression and Visualization Using PCA and T-SNE[M]. Singapore: Springer Singapore, 2021: 327-337. |
29 | Jin W G, Barzilay R, Jaakkola T. Hierarchical generation of molecular graphs using structural motifs[C]//Proceedings of the 37th International Conference on Machine Learning. ACM, 2020: 4839-4848. |
30 | Jin W G, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation[C]// Proceedings of the International Conference on Machine Learning. 2018. |
31 | Liu Q, Allamanis M, Brockschmidt M, et al. Constrained graph variational autoencoders for molecule design[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: ACM, 2018: 7806-7815. |
32 | Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Science, 2018, 4(2): 268-276. |
33 | Ochiai T, Inukai T, Akiyama M, et al. Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity[J]. Communications Chemistry, 2023, 6(1): 249. |
[1] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[2] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[3] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[4] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[5] | Huaqiang WEN, Quanhu SUN, Weifeng SHEN. Targeted intelligent molecular generation framework based on fragments chemical space [J]. CIESC Journal, 2024, 75(4): 1655-1667. |
[6] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[7] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[8] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[9] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[10] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[11] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[12] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[13] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[14] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[15] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||