CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4679-4688.DOI: 10.11949/0438-1157.20240599
• Process system engineering • Previous Articles Next Articles
Yong ZHANG(), Jingbo ZHAO(
), Limin QUAN
Received:
2024-05-31
Revised:
2024-07-24
Online:
2025-01-03
Published:
2024-12-25
Contact:
Jingbo ZHAO
通讯作者:
赵景波
作者简介:
张勇(2001—),男,硕士研究生, z15263056338@163.com
基金资助:
CLC Number:
Yong ZHANG, Jingbo ZHAO, Limin QUAN. A prediction method for effluent ammonia nitrogen concentration based on convolutional layer and attention mechanism long short-term memory network[J]. CIESC Journal, 2024, 75(12): 4679-4688.
张勇, 赵景波, 权利敏. 基于卷积层-注意力机制的长短期记忆网络出水氨氮浓度预测方法[J]. 化工学报, 2024, 75(12): 4679-4688.
1 | 韩红桂, 赵雅倩, 杨宏燕, 等. 数据驱动的污水处理曝气过程低碳优化控制方法[J]. 北京工业大学学报, 2024, 50(2): 131-139. |
Han H G, Zhao Y Q, Yang H Y, et al. Data-driven optimal control method of low-carbon for waste water treatment aeration process[J]. Journal of Beijing University of Technology, 2024, 50(2): 131-139. | |
2 | Wang J H, Guo Y, Peng S, et al. Prediction of effluent ammonia nitrogen in wastewater treatment plant based on self-organizing hybrid neural network[J]. Journal of Water Process Engineering, 2024, 59: 104930. |
3 | 刘壮壮, 鞠然, 刘崇涛, 等. 电化学膜生物反应器处理污水性能提升策略及研究现状[J]. 化工学报, 2023, 74(11): 4433-4444. |
Liu Z Z, Ju R, Liu C T, et al. Strategies for performance enhancement of electrochemical membrane bioreactors for wastewater treatment and current research status[J]. CIESC Journal, 2023, 74(11): 4433-4444. | |
4 | Mardani S, Baghdadi M, Torabian A, et al. Optimization of ammonia and COD removal from municipal wastewater effluent by electrochemical continuous flow reactor equipped with Ti/RuO2 and Cu foam[J]. Journal of Water Process Engineering, 2023, 55: 104185. |
5 | Zhang X Y, Tian J L, Jiang Y S, et al. Direct ammonium recovery from the permeate of a pilot-scale anaerobic MBR by biochar to advance low-carbon municipal wastewater reclamation and urban agriculture[J]. Science of the Total Environment, 2023, 877: 162872. |
6 | Wang G P, Dai X H, Zhao S H, et al. Research on ammonia removal from reject water produced from anaerobic digestion of thermally hydrolyzed sludge through partial nitrification-anammox[J]. Water, Air, & Soil Pollution, 2022, 233(4): 106. |
7 | 蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量[J]. 自动化学报, 2019, 45(5): 906-919. |
Meng X, Qiao J F, Han H G. Soft measurement of key effluent parameters in wastewater treatment process using brain-like modular neural networks[J]. Acta Automatica Sinica, 2019, 45(5): 906-919. | |
8 | Quan L M, Meng X, Qiao J F. Robust self-constructing fuzzy neural network-based online estimation for industrial product quality[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2213-2222. |
9 | Guo X, Li W J, Qiao J F. A self-organizing modular neural network based on empirical mode decomposition with sliding window for time series prediction[J]. Applied Soft Computing, 2023, 145: 110559. |
10 | Shin C, Szczuka A, Jiang R J, et al. Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor[J]. Environmental Science: Water Research & Technology, 2021, 7(4): 739-747. |
11 | Shahar B, Guttman L. An integrated, two-step biofiltration system with Ulva fasciata for sequenced removal of ammonia and nitrate in mariculture effluents[J]. Algal Research, 2020, 52: 102120. |
12 | 张璐, 张嘉成, 韩红桂, 等. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225. |
Zhang L, Zhang J C, Han H G, et al. FNN-based process control for biochemical phosphorus in WWTP[J]. CIESC Journal, 2020, 71(3): 1217-1225. | |
13 | 李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336. |
Li Y M, Shi X D, Xiong W L. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336. | |
14 | Zhou H B, Qiao J F. Soft sensing of effluent ammonia nitrogen using rule automatic formation-based adaptive fuzzy neural network[J]. Desalination and Water Treatment, 2019, 140: 132-142. |
15 | Qiao J F, Zhang Z Z, Bo Y C. An online self-adaptive modular neural network for time-varying systems[J]. Neurocomputing, 2014, 125: 7-16. |
16 | 韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3): 1032-1040. |
Han H G, Chen Z Y, Qiao J F, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040. | |
17 | Chantilas A, El-Khattabi A R, Gvino E, et al. Interlinkages and gaps: a review of the literature on intergovernmental relations for flood management in the face of climate change[J]. Frontiers in Sustainable Cities, 2023, 5: 1135513. |
18 | Dube P J, Vanotti M B, Szogi A A, et al. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology[J]. Waste Management, 2016, 49: 372-377. |
19 | Tahmasbi R, Kholghi M, Najarchi M, et al. Post-treatment of reclaimed municipal wastewater through unsaturated and saturated porous media in a large-scale experimental model[J]. Water, 2022, 14(7): 1137. |
20 | Moradvandi A, Abraham E, Goudjil A, et al. An identification algorithm of switched Box-Jenkins systems in the presence of bounded disturbances: an approach for approximating complex biological wastewater treatment models[J]. Journal of Water Process Engineering, 2024, 60: 105202. |
21 | Qin J, Guo H J. Expert system development on on-line measurement of sewage treatment based process[J]. Sensors & Transducers, 2014, 164: 227-232. |
22 | Mirikitani D T, Nikolaev N. Recursive Bayesian recurrent neural networks for time-series modeling[J]. IEEE Transactions on Neural Networks, 2010, 21(2): 262-274. |
23 | Piri J, Pirzadeh B, Keshtegar B, et al. Reliability analysis of pumping station for sewage network using hybrid neural networks — genetic algorithm and method of moment[J]. Process Safety and Environmental Protection, 2021, 145: 39-51. |
24 | Waqas S, Harun N Y, Sambudi N S, et al. SVM and ANN modelling approach for the optimization of membrane permeability of a membrane rotating biological contactor for wastewater treatment[J]. Membranes, 2022, 12(9): 821. |
25 | Li D, Yang C H, Li Y G. A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes[J]. Water Research, 2024, 254: 121347. |
26 | Farhi N, Kohen E, Mamane H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. |
27 | Qiao J F, Quan L M, Yang C L. Design of modeling error PDF based fuzzy neural network for effluent ammonia nitrogen prediction[J]. Applied Soft Computing, 2020, 91: 106239. |
28 | Meng X, Zhang Y, Quan L M, et al. A self-organizing fuzzy neural network with hybrid learning algorithm for nonlinear system modeling[J]. Information Sciences, 2023, 642: 119145. |
29 | Yaqub M, Asif H, Kim S, et al. Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network[J]. Journal of Water Process Engineering, 2020, 37: 101388. |
30 | Bhadra S, Sagan V, Skobalski J, et al. End-to-end 3D CNN for plot-scale soybean yield prediction using multitemporal UAV-based RGB images[J]. Precision Agriculture, 2024, 25(2): 834-864. |
31 | Yu H H, Yang L, Li D L, et al. A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture[J]. Information Processing in Agriculture, 2021, 8(1): 64-74. |
32 | Li J C, Lin S J, Zhang L, et al. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Frontiers of Environmental Science & Engineering, 2023, 18(3): 31. |
33 | Eledum H, Awadallah H H. A Monte Carlo study for dealing with multicollinearity and autocorrelation problems in linear regression using two stage ridge regression method[J]. Mathematics and Statistics, 2021, 9(5): 630-638. |
[1] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[2] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[3] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[4] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[5] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[6] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[7] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
[8] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[9] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[10] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[11] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[12] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[13] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[14] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[15] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 532
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 156
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||