CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 576-583.DOI: 10.11949/0438-1157.20240723
• Fluid dynamics and transport phenomena • Previous Articles
Panpan WEI1(), Yinan LIU1, Chunying ZHU1(
), Taotao FU1, Xiqun GAO2, Youguang MA1
Received:
2024-06-28
Revised:
2024-07-25
Online:
2025-03-10
Published:
2025-03-25
Contact:
Chunying ZHU
魏攀攀1(), 刘怿楠1, 朱春英1(
), 付涛涛1, 高习群2, 马友光1
通讯作者:
朱春英
作者简介:
魏攀攀(2001—),男,硕士研究生,weipanpan@tju.edu.cn
基金资助:
CLC Number:
Panpan WEI, Yinan LIU, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Preparation of aqueous two-phase droplets in improved T-shaped microchannel[J]. CIESC Journal, 2025, 76(2): 576-583.
魏攀攀, 刘怿楠, 朱春英, 付涛涛, 高习群, 马友光. 改进的T型微通道内双水相液滴的制备[J]. 化工学报, 2025, 76(2): 576-583.
初始浓度 | 相别 | 流体 | 密度ρ/(g/cm3) | 黏度μ/(mPa·s) | 表面张力σ/(mN/m) |
---|---|---|---|---|---|
24%(质量分数) PEG | 连续相 | PEG富相溶液 | 1.066 | 40.968 | 0.48 |
24%(质量分数)TSC | 分散相 | TSC富相溶液 | 1.143 | 2.421 |
Table 1 Physical properties of the fluids used
初始浓度 | 相别 | 流体 | 密度ρ/(g/cm3) | 黏度μ/(mPa·s) | 表面张力σ/(mN/m) |
---|---|---|---|---|---|
24%(质量分数) PEG | 连续相 | PEG富相溶液 | 1.066 | 40.968 | 0.48 |
24%(质量分数)TSC | 分散相 | TSC富相溶液 | 1.143 | 2.421 |
1 | Iqbal M, Tao Y F, Xie S Y, et al. Aqueous two-phase system (ATPS): an overview and advances in its applications[J]. Biological Procedures Online, 2016, 18: 18. |
2 | Mastiani M, Firoozi N, Petrozzi N, et al. Polymer-salt aqueous two-phase system (ATPS) micro-droplets for cell encapsulation[J]. Scientific Reports, 2019, 9: 15561. |
3 | Mastiani M, Seo S, Mosavati B, et al. High-throughput aqueous two-phase system droplet generation by oil-free passive microfluidics[J]. ACS Omega, 2018, 3(8): 9296-9302. |
4 | Song Y, Sauret A, Cheung Shum H. All-aqueous multiphase microfluidics[J]. Biomicrofluidics, 2013, 7(6): 61301 |
5 | Glyk A, Scheper T, Beutel S. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6599-6616. |
6 | Moon B U, Hwang D K, Tsai S S H. Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets[J]. Lab on a Chip, 2016, 16(14): 2601-2608. |
7 | Daradmare S, Lee C S. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches[J]. Colloids and Surfaces B: Biointerfaces, 2022, 219: 112795. |
8 | Teixeira A G, Agarwal R, Ko K R, et al. Emerging biotechnology applications of aqueous two-phase systems[J]. Advanced Healthcare Materials, 2018, 7(6): 1701036. |
9 | Zhou C M, Zhu P G, Tian Y, et al. Progress in all-aqueous droplets generation with microfluidics: mechanisms of formation and stability improvements[J]. Biophysics Reviews, 2022, 3(2): 021301. |
10 | Elvira K S, Solvas X C I, Wootton R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915. |
11 | Chiu D T, DeMello A J, Di Carlo D, et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences[J]. Chem, 2017, 2(2): 201-223. |
12 | Maceiczyk R M, Bezinge L, DeMello A J. Kinetics of nanocrystal synthesis in a microfluidic reactor: theory and experiment[J]. Reaction Chemistry & Engineering, 2016, 1(3): 261-271. |
13 | Cui P, Wang S C. Application of microfluidic chip technology in pharmaceutical analysis: a review[J]. Journal of Pharmaceutical Analysis, 2019, 9(4): 238-247. |
14 | Berlanda S F, Breitfeld M, Dietsche C L, et al. Recent advances in microfluidic technology for bioanalysis and diagnostics[J]. Analytical Chemistry, 2021, 93(1): 311-331. |
15 | Zhou C, Chen Z J, Xie J, et al. Experimental study on rolling microchannel and nanochannel in chip materials by diamond[J]. Optics and Precision Engineering, 2023, 31(12): 1785-1792. |
16 | Sato R, Yahagi T, Tatami J, et al. Rapid manufacturing of complex-structured transparent silica glass materials through a hybridized approach of photo-curing and machining from interparticle photo-cross-linkable suspensions[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16445-16452. |
17 | Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198. |
18 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
19 | 张明慧, 恩溪弄, 冯博冉, 等. 基于微流控技术的液滴生成方法研究[J]. 印刷与数字媒体技术研究, 2024(1): 13-23, 30. |
Zhang M H, En X N, Feng B R, et al. Study on droplet generation methods based on microfluidics technology[J]. Printing and Digital Media Technology Study, 2024(1): 13-23, 30. | |
20 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
21 | Sheng L, Ma L, Chen Y C, et al. A comprehensive study of droplet formation in a capillary embedded step T-junction: from squeezing to jetting[J]. Chemical Engineering Journal, 2022, 427: 132067. |
22 | Wang K, Lu Y C, Xu J H, et al. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J]. AIChE Journal, 2011, 57(2): 299-306. |
23 | Nunes J K, Tsai S S H, Wan J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114002. |
24 | Husny J, Cooper-White J J. The effect of elasticity on drop creation in T-shaped microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 121-136. |
25 | Mastiani M, Seo S, Jimenez S M, et al. Flow regime mapping of aqueous two-phase system droplets in flow-focusing geometries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 111-120. |
26 | 翟小威, 潘湄蝶, 石盼, 等. 一步法高通量可控制备生物相容水/水微囊及其响应释放[J]. 高等学校化学学报, 2022, 43(12): 345-354. |
Zhai X W, Pan M D, Shi P, et al. One-step high-throughput controlled preparation of biocompatible water/water microcapsules with triggered release[J]. Chem. J. Chinese Universities, 2022, 43(12): 345-354. | |
27 | Ma L, Cui Y J, Sheng L, et al. Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice[J]. Chinese Journal of Chemical Engineering, 2022, 42: 210-218. |
28 | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
29 | Christopher G F, Noharuddin N N, Taylor J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(3 Pt 2): 036317. |
30 | Li X L, He L Q, He Y, et al. Numerical study of droplet formation in the ordinary and modified T-junctions[J]. Physics of Fluids, 2019, 31(8): 082101. |
31 | Glawdel T, Elbuken C, Ren C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime(Ⅰ): Experimental observations[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 85(1 Pt 2): 016322. |
32 | Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network[J]. Lab on a Chip, 2002, 2(1): 24-26. |
33 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
34 | Dong Y P, Zhu H W, Xiang X Y, et al. Formation of viscoelastic droplets in asymmetrical parallel microchannels[J]. Chemical Engineering Journal, 2023, 471: 144646. |
35 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
36 | Jena S K, Bahga S S, Kondaraju S. Prediction of droplet sizes in a T-junction microchannel: effect of dispersed phase inertial forces[J]. Physics of Fluids, 2021, 33(3): 032120. |
[1] | Xinyuan ZHANG, Chengxiang HE, Yating LI, Chunying ZHU, Youguang MA, Taotao FU. Advances in simulation and experimental research methods for mass transfer of liquid-liquid heterogeneous system in microchannels [J]. CIESC Journal, 2025, 76(2): 484-503. |
[2] | Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit [J]. CIESC Journal, 2025, 76(1): 141-150. |
[3] | Xianming GAO, Wenxuan YANG, Shaohui LU, Xiaosong REN, Fangcai LU. Influence of droplet merging and jumping by dual-groove structures on superhydrophobic surfaces [J]. CIESC Journal, 2025, 76(1): 208-220. |
[4] | Han CHEN, Chang CAI, Hong LIU, Hongchao YIN. Experimental investigation on spray cooling heat transfer enhancement by n-pentanol additive [J]. CIESC Journal, 2025, 76(1): 131-140. |
[5] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
[6] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[7] | Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC [J]. CIESC Journal, 2024, 75(S1): 183-194. |
[8] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[9] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[10] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[11] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
[12] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[13] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[14] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[15] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||