CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 564-575.DOI: 10.11949/0438-1157.20241048
• Fluid dynamics and transport phenomena • Previous Articles
Nannan XIE1(), He CHEN2, Guanghua YE1(
), Zhongming SHU1, Songbao FU2(
), Xinggui ZHOU1
Received:
2024-09-23
Revised:
2024-10-25
Online:
2025-03-10
Published:
2025-03-25
Contact:
Guanghua YE, Songbao FU
谢楠楠1(), 陈和2, 叶光华1(
), 束忠明1, 傅送保2(
), 周兴贵1
通讯作者:
叶光华,傅送保
作者简介:
谢楠楠(1999—),男,硕士研究生,Y30220141@mail.ecust.edu.cn
基金资助:
CLC Number:
Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations[J]. CIESC Journal, 2025, 76(2): 564-575.
谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575.
T/mm | H/T | C0/T | C1/T | C2/T | C3/T | D1~3/T | d/T | W/T | P0/T | P/T | E/T |
---|---|---|---|---|---|---|---|---|---|---|---|
500 | 1.4 | 0.15 | 0.1 | 0.5 | 0.9 | 0.4 | 0.36 | 0.1 | 0.3 | 0.2 | 0.05 |
Table 1 Structural parameters of gas-liquid stirred tank
T/mm | H/T | C0/T | C1/T | C2/T | C3/T | D1~3/T | d/T | W/T | P0/T | P/T | E/T |
---|---|---|---|---|---|---|---|---|---|---|---|
500 | 1.4 | 0.15 | 0.1 | 0.5 | 0.9 | 0.4 | 0.36 | 0.1 | 0.3 | 0.2 | 0.05 |
1 | Visscher F, van der Schaaf J, Nijhuis T A, et al. Rotating reactors—a review[J]. Chemical Engineering Research and Design, 2013, 91(10): 1923-1940. |
2 | Jegatheeswaran S, Kazemzadeh A, Ein-Mozaffari F. Enhanced aeration efficiency in non-Newtonian fluids using coaxial mixers: high-solidity ratio central impeller with an anchor[J]. Chemical Engineering Journal, 2019, 378: 122081. |
3 | Montante G, Paglianti A. Gas hold-up distribution and mixing time in gas-liquid stirred tanks[J]. Chemical Engineering Journal, 2015, 279: 648-658. |
4 | Martín M, Montes F J, Galán M A. Bubbling process in stirred tank reactors(Ⅱ): Agitator effect on the mass transfer rates[J]. Chemical Engineering Science, 2008, 63(12): 3223-3234. |
5 | Liu B Q, Xiao Q, Sun N, et al. Effect of gas distributor on gas-liquid dispersion and mass transfer characteristics in stirred tank[J]. Chemical Engineering Research and Design, 2019, 145: 314-322. |
6 | Zhu Y W, Yu J C, Ma X, et al. Blade configuration optimization of the axial flow impeller applied in a tall stirred tank[J]. Industrial & Engineering Chemistry Research, 2023, 62(35): 14047-14060. |
7 | Alfaro-Ayala J A, Ayala-Ramírez V, Gallegos-Muñoz A, et al. Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD[J]. Chemical Engineering Research and Design, 2015, 100: 203-211. |
8 | Bao Y Y, Wang B J, Lin M L, et al. Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank[J]. Chinese Journal of Chemical Engineering, 2015, 23(6): 890-896. |
9 | Arjunwadkar S J, Saravanan K, Pandit A B, et al. Optimizing the impeller combination for maximum hold-up with minimum power consumption[J]. Biochemical Engineering Journal, 1998, 1(1): 25-30. |
10 | Xia J Y, Wang Y H, Zhang S L, et al. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment[J]. Biochemical Engineering Journal, 2009, 43(3): 252-260. |
11 | Zhang J J, Gao Z M, Cai Y T, et al. Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations[J]. Chemical Engineering Science, 2017, 170: 464-475. |
12 | You S T, Raman A A A, Raja Shazrin Shah Raja Ehsan Shah, et al. Multiple-impeller stirred vessel studies[J]. Reviews in Chemical Engineering, 2014, 30(3): 323-336. |
13 | Kang Z M, Feng L F, Wang J J. Optimization of a gas-liquid dual-impeller sirred tank based on deep learning with a small data set from CFD simulation[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 843-855. |
14 | Zheng Z Y, Sun D D, Li J, et al. Improving oxygen transfer efficiency by developing a novel energy-saving impeller[J]. Chemical Engineering Research and Design, 2018, 130: 199-207. |
15 | Zhao X Z, Fan H A, Lin G B, et al. Multi-objective optimization of radially stirred tank based on CFD and machine learning[J]. AIChE Journal, 2024, 70(3): e18324. |
16 | Jia Z T, Zhang S F, Guo M K, et al. Experimental and numerical investigation of the characteristics of novel disc turbines in aerated stirred tanks[J]. Industrial & Engineering Chemistry Research, 2023, 62(25): 9886-9900. |
17 | Zhang Y H, Yang C, Mao Z S. Large eddy simulation of the gas-liquid flow in a stirred tank[J]. AIChE Journal, 2008, 54(8): 1963-1974. |
18 | Cooke M, Heggs P J. Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions[J]. Chemical Engineering Science, 2005, 60(20): 5529-5543. |
19 | Yang S F, Li X Y, Deng G, et al. Application of KHX impeller in a low-shear stirred bioreactor[J]. Chinese Journal of Chemical Engineering, 2014, 22(10): 1072-1077. |
20 | Ankamma Rao D, Sivashanmugam P. Experimental and CFD simulation studies on power consumption in mixing using energy saving turbine agitator[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(1): 157-161. |
21 | Xu C Z, Liu X, Gu X. Computational studies of airlift and stirred airlift bioreactors with non-Newtonian fluid: a comparison of hydrodynamics and gas-liquid mass transfer[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110800. |
22 | Zhang J J, Gao Z M, Cai Y T, et al. Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 703-710. |
23 | Xie M H, Xia J Y, Zhou Z, et al. Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5941-5953. |
24 | Chen H, Zhang X B, Luo Z H. A CFD-PBM coupled method to optimize a pilot-scale stirred bioreactor[J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 8302-8312. |
25 | Lane G L, Schwarz M P, Evans G M. Numerical modelling of gas-liquid flow in stirred tanks[J]. Chemical Engineering Science, 2005, 60(8/9): 2203-2214. |
26 | Khopkar A R, Kasat G R, Pandit A B, et al. CFD simulation of mixing in tall gas-liquid stirred vessel: role of local flow patterns[J]. Chemical Engineering Science, 2006, 61(9): 2921-2929. |
27 | Scargiali F, D'Orazio A, Grisafi F, et al. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks[J]. Chemical Engineering Research and Design, 2007, 85(5): 637-646. |
28 | Pukkella A K, Vysyaraju R, Tammishetti V, et al. Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation[J]. Chemical Engineering Journal, 2019, 358: 621-633. |
29 | Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
30 | Gu D Y, Wen L, Xu H, et al. Study on hydrodynamics characteristics in a gas-liquid stirred tank with a self-similarity impeller based on CFD-PBM coupled model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104688. |
31 | Li S, Yang R Q, Wang C L, et al. CFD-PBM simulation on bubble size distribution in a gas-liquid-solid flow three-phase flow stirred tank[J]. ACS Omega, 2022, 7(2): 1934-1942. |
32 | Ramkrishna D. Theory and Applications to Particulate Systems in Engineering[M]. San Diego: Academic Press, 2000. |
33 | Luo H, Svendsen H F. Modeling and simulation of binary approach by energy conservation analysis [J]. Chemical Engineering Communications, 1996, 145(1): 145-153. |
34 | Green D W, Southard M Z. Perry's Chemical Engineers' Handbook[M]. 9th ed. New York: McGraw Hill, 2018. |
35 | Jamshidian R, Scully J, van den Akker. Two-fluid simulations of an aerated lab-scale bioreactor[J]. Chemical Engineering Research and Design, 2023, 196: 254-275. |
36 | Dhanasekharan K M, Sanyal J, Jain A, et al. A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics[J].Chemical Engineering Science, 2005, 60(1): 213-218. |
37 | 张志斌, 戴干策, 陈敏恒. 气液搅拌反应器功率消耗的研究[J]. 化学反应工程与工艺, 1985, 1(S1): 38-46. |
Zhang Z B, Dai G C, Chen M H. Study on power consumption of gas-liquid stirred reactor[J]. Chemical Reaction Engineering and Technology, 1985, 1(S1): 38-46. |
[1] | Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit [J]. CIESC Journal, 2025, 76(1): 141-150. |
[2] | Junjie ZHANG, Yuan CHEN, Yuntang LI, Xiaolu LI, Bingqing WANG, Xudong PENG. Analysis and optimization of dynamic performance of super-elliptical hole floating seal dam compliant foil face gas seal [J]. CIESC Journal, 2025, 76(1): 296-310. |
[3] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
[4] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
[5] | Na HUANG, Yunlong JIANG, Donghan WANG, Mingting WU, Xueli JIANG, Yu ZHONG. Numerical study of influence of channel vibration frequency on flow and heat transfer of supercritical n-decane with pyrolysis reaction [J]. CIESC Journal, 2025, 76(1): 173-183. |
[6] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[7] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[8] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[9] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[10] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[11] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[12] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[13] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[14] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[15] | Zhian WANG, Zhong LAN, Xuehu MA. Simulation of effect of nozzle parameters on supercritical hydrothermal combustion characteristics [J]. CIESC Journal, 2024, 75(6): 2190-2200. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||