CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3113-3121.DOI: 10.11949/0438-1157.20240281
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chaowei CHEN1(), Yang LIU1, Wenjing DU1, Jinbo LI2, Dakuo SHI3, Gongming XIN1(
)
Received:
2024-03-08
Revised:
2024-05-07
Online:
2024-10-10
Published:
2024-09-25
Contact:
Gongming XIN
陈超伟1(), 柳洋1, 杜文静1, 李金波2, 史大阔3, 辛公明1(
)
通讯作者:
辛公明
作者简介:
陈超伟(1996—),男,博士研究生,17853141067@163.com
基金资助:
CLC Number:
Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots[J]. CIESC Journal, 2024, 75(9): 3113-3121.
陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121.
Parameters | Maximum relative uncertainties |
---|---|
Q | 1% |
ΔP | 0.067% |
Tin&Tout | 0.2℃ |
TRTD | 0.5℃ |
q | 10.21% |
COP | 10.26% |
Table 1 Maximum uncertainty of each indicator
Parameters | Maximum relative uncertainties |
---|---|
Q | 1% |
ΔP | 0.067% |
Tin&Tout | 0.2℃ |
TRTD | 0.5℃ |
q | 10.21% |
COP | 10.26% |
Flow | Heat transfer | ||||||
---|---|---|---|---|---|---|---|
Q/(μl/min) | ΔP模拟/kPa | ΔP实验/kPa | Error/% | qh/(W/cm2) | TM,模拟/℃ | TM,实验/℃ | Error/% |
500 | 5.12 | 5.00 | 2.40 | 520 | 38.42 | 39.27 | 5.96 |
1000 | 10.71 | 10.80 | 0.83 | 630 | 41.25 | 41.40 | 0.91 |
1500 | 16.77 | 17.40 | 3.62 | 741 | 44.12 | 43.53 | 3.18 |
2000 | 23.24 | 24.50 | 5.14 | 856 | 47.08 | 45.82 | 6.05 |
2500 | 30.09 | 32.25 | 6.70 | 977 | 50.11 | 48.12 | 8.61 |
3000 | 37.27 | 40.40 | 7.75 | 1100 | 52.98 | 50.62 | 9.21 |
Table 2 Comparison of experiment and simulation results
Flow | Heat transfer | ||||||
---|---|---|---|---|---|---|---|
Q/(μl/min) | ΔP模拟/kPa | ΔP实验/kPa | Error/% | qh/(W/cm2) | TM,模拟/℃ | TM,实验/℃ | Error/% |
500 | 5.12 | 5.00 | 2.40 | 520 | 38.42 | 39.27 | 5.96 |
1000 | 10.71 | 10.80 | 0.83 | 630 | 41.25 | 41.40 | 0.91 |
1500 | 16.77 | 17.40 | 3.62 | 741 | 44.12 | 43.53 | 3.18 |
2000 | 23.24 | 24.50 | 5.14 | 856 | 47.08 | 45.82 | 6.05 |
2500 | 30.09 | 32.25 | 6.70 | 977 | 50.11 | 48.12 | 8.61 |
3000 | 37.27 | 40.40 | 7.75 | 1100 | 52.98 | 50.62 | 9.21 |
28 | Sharma C S, Schlottig G, Brunschwiler T, et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694. |
29 | Waddell A M, Punch J, Stafford J, et al. The characterization of a low-profile channel-confined jet for targeted hot-spot cooling in microfluidic applications[J]. International Journal of Heat and Mass Transfer, 2016, 101: 620-628. |
30 | Holman J P, Gajda W J. Experimental Methods for Engineers[M]. New York: McGraw-Hill,1994. |
1 | Sohel Murshed S M, Nieto de Castro C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
2 | Kandlikar S, Colin S, Peles Y, et al. Heat transfer in microchannels-2012 status and research needs[J]. Journal of Heat Transfer, 2013, 135: 091001. |
3 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
4 | Yao Z, Lu Y W, Kandlikar S G. Pool boiling heat transfer enhancement through nanostructures on silicon microchannels[J]. Journal of Nanotechnology in Engineering and Medicine, 2012, 3(3): 031002. |
5 | Wang S L, An D, Yang Y R, et al. Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude[J]. International Journal of Thermal Sciences, 2023, 185: 108080. |
6 | Mills Z G, Warey A, Alexeev A. Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels[J]. International Journal of Heat and Mass Transfer, 2016, 97: 450-460. |
7 | Rostami J, Abbassi A, Saffar-Avval M. Optimization of conjugate heat transfer in wavy walls microchannels[J]. Applied Thermal Engineering, 2015, 82: 318-328. |
8 | 康宁, 吴慧英, 徐法尧. 硅基内肋阵列微通道内的流动和换热特性[J]. 工程热物理学报, 2015, 36(7): 1572-1577. |
Kang N, Wu H Y, Xu F Y. Flow and heat transfer characteristics in silicon-based pin-fin microchannels[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1572-1577. | |
9 | Gupta D, Saha P, Roy S. Computational analysis of perforation effect on the thermo-hydraulic performance of micro pin-fin heat sink[J]. International Journal of Thermal Sciences, 2021, 163: 106857. |
10 | Marschewski J, Brechbühler R, Jung S, et al. Significant heat transfer enhancement in microchannels with herringbone-inspired microstructures[J]. International Journal of Heat and Mass Transfer, 2016, 95: 755-764. |
11 | Ali Ghani I, Kamaruzaman N, Sidik N A C. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1969-1981. |
12 | Yang M, Li M T, Hua Y C, et al. Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120230. |
13 | Chiam Z L, Lee P S, Singh P K, et al. Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1316-1330. |
14 | 李昀, 曹杰, 华夏, 等. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514. |
Li Y, Cao J, Hua X, et al. Experimental investigation on flow boiling heat transfer characteristics in short flow passage counter-flow microchannels[J]. CIESC Journal, 2023, 74(11): 4501-4514. | |
15 | Chen C W, Li F, Wang X Y, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
16 | Li X Y, Wang S L, Wang X D, et al. Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks[J]. International Journal of Thermal Sciences, 2019, 137: 616-626. |
17 | Lu G, Zhao J, Lin L, et al. A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins[J]. International Journal of Heat and Mass Transfer, 2017, 111: 1071-1078. |
18 | Zhou F, Zhou W, Qiu Q F, et al. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger[J]. Applied Thermal Engineering, 2018, 137: 616-631. |
19 | Shen H, Xie G N, Wang C C. The numerical simulation with staggered alternation locations and multi-flow directions on the thermal performance of double-layer microchannel heat sinks[J]. Applied Thermal Engineering, 2019, 163: 114332. |
20 | 张井志, 赵玉婷, 王英迪, 等. 正弦型微通道内液-液两相流型及流动特性实验研究[J]. 化工学报, 2022, 73(3): 1111-1118. |
Zhang J Z, Zhao Y T, Wang Y D, et al. Experimental study on liquid-liquid two-phase flow pattern and flow characteristics in sinusoidal microchannels[J]. CIESC Journal, 2022, 73(3): 1111-1118. | |
21 |
刘文竹, 云和明, 王宝雪, 等. 基于场协同和![]() |
Liu W Z, Yun H M, Wang B X, et al. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
22 | Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers[J]. International Journal of Thermal Sciences, 2018, 127: 201-212. |
23 | Chai L, Xia G D, Wang H S. Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers[J]. International Journal of Thermal Sciences, 2016, 110: 1-11. |
24 | Wang G L, Qian N, Ding G F. Heat transfer enhancement in microchannel heat sink with bidirectional rib[J]. International Journal of Heat and Mass Transfer, 2019, 136: 597-609. |
25 | Li F, Ma Q M, Xin G M, et al. Heat transfer and flow characteristics of microchannels with solid and porous ribs[J]. Applied Thermal Engineering, 2020, 178: 115639. |
26 | Lee Y J, Singh P K, Lee P S. Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study[J]. International Journal of Heat and Mass Transfer, 2015, 81: 325-336. |
27 | Lee Y J, Lee P S, Chou S K. Hotspot mitigating with obliquely finned microchannel heat sink—an experimental study[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(8): 1332-1341. |
[1] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[2] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[3] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[4] | Bei PEI, Zhibin HAO, Tianxiang XU, Ziqi ZHONG, Rui LI, Chong JIA, Yulong DUAN. Effect of surfactants on fire extinguishing efficiency of salted double fluid fine water mist [J]. CIESC Journal, 2024, 75(9): 3369-3378. |
[5] | Yin CHEN, Xiao ZHAO, Wangfang DU, Zhuqiang YANG, Kai LI, Jianfu ZHAO. Optimization of diagnostic method for liquid film dynamics in spray cooling and heat transfer characteristics analysis [J]. CIESC Journal, 2024, 75(8): 2734-2743. |
[6] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[7] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[8] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[9] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[10] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[11] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
[12] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[13] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[14] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[15] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||