CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4348-4358.DOI: 10.11949/0438-1157.20240566
• Energy and environmental engineering • Previous Articles Next Articles
Han TANG(), Jin CAI, Haihang QIN, Guangjin CHEN(
), Changyu SUN(
)
Received:
2024-05-27
Revised:
2024-08-09
Online:
2024-12-26
Published:
2024-11-25
Contact:
Guangjin CHEN, Changyu SUN
通讯作者:
陈光进,孙长宇
作者简介:
汤涵(1997—),男,博士研究生,th177450@163.com
基金资助:
CLC Number:
Han TANG, Jin CAI, Haihang QIN, Guangjin CHEN, Changyu SUN. Predictive model on gas solubility in water-rich phase coexisted with gas hydrates[J]. CIESC Journal, 2024, 75(11): 4348-4358.
汤涵, 蔡进, 覃海航, 陈光进, 孙长宇. 水合物共存体系中气体溶解度预测模型[J]. 化工学报, 2024, 75(11): 4348-4358.
T/K | p/MPa | Np① | ARD ② /% | Ref. |
---|---|---|---|---|
274.15~284.35 | 3.50~6.50 | 15 | 3.544 | [ |
276.20~281.70 | 5.00~14.30 | 16 | 2.953 | [ |
273.10~278.20 | 4.98~19.35 | 19 | 4.417 | [ |
276.45~294.55 | 10.00~40.00 | 44 | 7.537 | [ |
280.30~280.80 | 10.10~14.30 | 3 | 2.391 | [ |
274.15~286.15 | 6.00~20.00 | 13 | 8.327 | [ |
overall | 110 | 5.740 |
Table 1 Predicting results of methane solubility in water coexisted with hydrate phase
T/K | p/MPa | Np① | ARD ② /% | Ref. |
---|---|---|---|---|
274.15~284.35 | 3.50~6.50 | 15 | 3.544 | [ |
276.20~281.70 | 5.00~14.30 | 16 | 2.953 | [ |
273.10~278.20 | 4.98~19.35 | 19 | 4.417 | [ |
276.45~294.55 | 10.00~40.00 | 44 | 7.537 | [ |
280.30~280.80 | 10.10~14.30 | 3 | 2.391 | [ |
274.15~286.15 | 6.00~20.00 | 13 | 8.327 | [ |
overall | 110 | 5.740 |
Fig.4 Comparison of solubility of methane in water between predictions and literature data in the presence of hydrate phase dots—experimental data[36]; lines—predicted results in this work
T/K | p/MPa | Np | ARD/% | Ref. |
---|---|---|---|---|
273.95~283.15 | 2.00~6.00 | 20 | 2.613 | [ |
277.84~280.98 | 4.99~14.20 | 32 | 3.866 | [ |
279.10~281.50 | 10.10~20.10 | 10 | 1.734 | [ |
275.30~281.40 | 2.02~4.00 | 11 | 2.272 | [ |
273.95~282.85 | 2.00~5.00 | 7 | 2.349 | [ |
275.15~281.15 | 1.85~3.97 | 30 | 6.145 | [ |
276.15~282.75 | 30.00 | 9 | 2.995 | [ |
274.06~281.08 | 1.87~23.60 | 30 | 1.997 | [ |
273.95~281.65 | 2.00~3.70 | 8 | 2.320 | [ |
278.60~283.20 | 2.33~7.47 | 8 | 5.951 | [ |
276.15~289.05 | 3.00~90.00 | 24 | 3.977 | [ |
overall | 189 | 3.532 |
Table 2 Predicting results of CO2 solubility in water coexisted with the hydrate phase
T/K | p/MPa | Np | ARD/% | Ref. |
---|---|---|---|---|
273.95~283.15 | 2.00~6.00 | 20 | 2.613 | [ |
277.84~280.98 | 4.99~14.20 | 32 | 3.866 | [ |
279.10~281.50 | 10.10~20.10 | 10 | 1.734 | [ |
275.30~281.40 | 2.02~4.00 | 11 | 2.272 | [ |
273.95~282.85 | 2.00~5.00 | 7 | 2.349 | [ |
275.15~281.15 | 1.85~3.97 | 30 | 6.145 | [ |
276.15~282.75 | 30.00 | 9 | 2.995 | [ |
274.06~281.08 | 1.87~23.60 | 30 | 1.997 | [ |
273.95~281.65 | 2.00~3.70 | 8 | 2.320 | [ |
278.60~283.20 | 2.33~7.47 | 8 | 5.951 | [ |
276.15~289.05 | 3.00~90.00 | 24 | 3.977 | [ |
overall | 189 | 3.532 |
Fig.7 Comparison of CO2 solubility in water in equilibrium with hydrate under constant pressure conditions between experimental data and model predictions
Fig.8 Comparison of solubility of CO2 in water between model predictions and literature data in the presence of hydrate (different pressure conditions were represented by various data points in figure)
T/K | p/MPa | Np | Molarity ① /(mol/kg) | ARD/% | Ref. |
---|---|---|---|---|---|
273.15~279.15 | 4.00~6.80 | 10 | 0.529 | 2.860 | [ |
273.15~279.15 | 4.00~6.80 | 10 | 1.092 | 2.206 | [ |
277.80~283.70 | 10.10~15.10 | 8 | 1.000 | 1.785 | [ |
276.25~292.95 | peq② | 15 | 0.558 | 2.695 | [ |
277.46~283.62 | peq | 18 | 0.639 | 2.064 | [ |
overall | 61 | 2.336 |
Table 3 Methane solubility for CH4 + H2O + NaCl in H-Lw two-phase systems
T/K | p/MPa | Np | Molarity ① /(mol/kg) | ARD/% | Ref. |
---|---|---|---|---|---|
273.15~279.15 | 4.00~6.80 | 10 | 0.529 | 2.860 | [ |
273.15~279.15 | 4.00~6.80 | 10 | 1.092 | 2.206 | [ |
277.80~283.70 | 10.10~15.10 | 8 | 1.000 | 1.785 | [ |
276.25~292.95 | peq② | 15 | 0.558 | 2.695 | [ |
277.46~283.62 | peq | 18 | 0.639 | 2.064 | [ |
overall | 61 | 2.336 |
Fig.9 Comparison of experimental data and model predictions by CSMHYD software and this work for methane solubility in NaCl saline solutions containing CH4 hydrate
Fig.10 Comparison of solubility of methane in 1.0 mol/kg NaCl coexisted with hydrate between predictions and literature data dots—experimental data[8]; lines—model predictions in this work
T/K | p/MPa | Np | Molarity | ARD/% | Ref. |
---|---|---|---|---|---|
278.80~280.40 | 10.10~20.10 | 6 | 1.000 | 2.678 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.173 | 1.358 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.529 | 2.048 | [ |
275.95~278.15 | 4.20~8.00 | 13 | 0.639 | 2.615 | [ |
276.34~278.49 | 3.53~21.64 | 13 | 0.620 | 1.621 | [ |
overall | 58 | 1.990 |
Table 4 CO2 solubility for CO2 + H2O + NaCl in H-Lw two-phase systems
T/K | p/MPa | Np | Molarity | ARD/% | Ref. |
---|---|---|---|---|---|
278.80~280.40 | 10.10~20.10 | 6 | 1.000 | 2.678 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.173 | 1.358 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.529 | 2.048 | [ |
275.95~278.15 | 4.20~8.00 | 13 | 0.639 | 2.615 | [ |
276.34~278.49 | 3.53~21.64 | 13 | 0.620 | 1.621 | [ |
overall | 58 | 1.990 |
Fig.11 Comparison of temperatures corresponding to specific CO2 solubility in 0.62 mol/kg (a) and 1 mol/kg (b) NaCl at H-Lw equilibrium and predictions in this work
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL: CRC Press, 2008. |
2 | Veluswamy H P, Kumar R, Linga P. Hydrogen storage in clathrate hydrates: current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132. |
3 | Babu P, Linga P, Kumar R, et al. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture[J]. Energy, 2015, 85: 261-279. |
4 | Babu P, Nambiar A, He T B, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107. |
5 | 周守为, 李清平, 朱军龙, 等. CO2海洋封存的思考与新路径探索[J]. 天然气工业, 2024, 44(4): 1-10. |
Zhou S W, Li Q P, Zhu J L, et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry, 2024, 44(4): 1-10. | |
6 | Servio P, Englezos P. Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate[J]. Fluid Phase Equilibria, 2001, 190(1/2): 127-134. |
7 | Someya S, Bando S, Chen B X, et al. Measurement of CO2 solubility in pure water and the pressure effect on it in the presence of clathrate hydrate[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2503-2507. |
8 | Kim Y S, Lim B D, Lee J E, et al. Solubilities of carbon dioxide, methane, and ethane in sodium chloride solution containing gas hydrate[J]. Journal of Chemical & Engineering Data, 2008, 53(6): 1351-1354. |
9 | Abu Hassan M H, Sher F, Zarren G, et al. Kinetic and thermodynamic evaluation of effective combined promoters for CO2 hydrate formation[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103313. |
10 | Najafi M J, Mohebbi V. Solubility measurement of carbon dioxide in water in the presence of gas hydrate[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 738-745. |
11 | Sun Q, Tian H, Li Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate (part Ⅰ): Experimental measurement[J]. Fluid Phase Equilibria, 2016, 409: 131-135. |
12 | Wang X H, Xu X J, Cai J, et al. CO2 concentration in aqueous solution from gas-liquid equilibrium system to gas-liquid-hydrate coexistence system[J]. Gas Science and Engineering, 2023, 115: 205024. |
13 | Hashemi S, Macchi A, Bergeron S, et al. Prediction of methane and carbon dioxide solubility in water in the presence of hydrate[J]. Fluid Phase Equilibria, 2006, 246(1/2): 131-136. |
14 | Kim Y S, Ryu S K, Yang S O, et al. Liquid water-hydrate equilibrium measurements and unified predictions of hydrate-containing phase equilibria for methane, ethane, propane, and their mixtures[J]. Industrial & Engineering Chemistry Research, 2003, 42(11): 2409-2414. |
15 | Yang S O, Cho S H, Lee H, et al. Measurement and prediction of phase equilibria for water + methane in hydrate forming conditions[J]. Fluid Phase Equilibria, 2001, 185(1/2): 53-63. |
16 | Yang S O, Yang I M, Kim Y S, et al. Measurement and prediction of phase equilibria for water+CO2 in hydrate forming conditions[J]. Fluid Phase Equilibria, 2000, 175(1/2): 75-89. |
17 | Di M Y, Sun R, Geng L T, et al. An accurate model to calculate CO2 solubility in pure water and in seawater at hydrate-liquid water two‐phase equilibrium[J]. Minerals, 2021, 11(4): 393. |
18 | 李遵照, 郭绪强, 田欢. 水合物存在条件下CH4和CO2在溶液中溶解度计算[J]. 化工学报, 2010, 61(6): 1341-1348. |
Li Z Z, Guo X Q, Tian H. Calculation for solubility of methane and carbon dioxide in water in presence of hydrate [J]. CIESC Journal, 2010, 61(6): 1341-1348. | |
19 | Kurihara K, Tochigi K, Kojima K. Mixing rule containing regular-solution and residual excess free energy[J]. Journal of Chemical Engineering of Japan, 1987, 20(3): 227-231. |
20 | Avlonitis D, Danesh A, Todd A C. Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EoS[J]. Fluid Phase Equilibria, 1994, 94: 181-216. |
21 | Huang T, Li C J, Jia W L, et al. Application of equations of state to predict methane solubility under hydrate-liquid water two-phase equilibrium[J]. Fluid Phase Equilibria, 2016, 427: 35-45. |
22 | Chen G J, Guo T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1/2): 43-65. |
23 | Sun C Y, Chen G J. Modelling the hydrate formation condition for sour gas and mixtures[J]. Chemical Engineering Science, 2005, 60(17): 4879-4885. |
24 | 陈光进, 马庆兰, 郭天民. 水合物模型的建立及在含盐体系中的应用[J]. 石油学报, 2000, 21(1): 64-70. |
Chen G J, Ma Q L, Guo T M. A new hydrate model and its extended application in electrolyte containing system[J]. Acta Petrolei Sinica, 2000, 21(1): 64-70. | |
25 | Ma Q L, Chen G J, Guo T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2): 291-302. |
26 | 蔡进, 王晓辉, 汤涵, 等. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415. |
Cai J, Wang X H, Tang H, et al. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution[J]. CIESC Journal, 2023, 74(1): 408-415. | |
27 | Sun Q, Tian H, Guo X Q. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate (part Ⅱ): Model calculation[J]. The Canadian Journal of Chemical Engineering, 2018, 96(2): 620-624. |
28 | Valderrama J O. A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures[J]. Journal of Chemical Engineering of Japan, 1990, 23(1): 87-91. |
29 | Wong D S H, Sandler S I. A theoretically correct mixing rule for cubic equations of state[J]. AIChE Journal, 1992, 38(5): 671-680. |
30 | Li R, Wang X H, Cao B J, et al. Experimental and modeling on hydrate phase equilibrium conditions for hydrogen-containing gas mixtures in pure water and brines[J]. The Journal of Chemical Thermodynamics, 2023, 179: 107001. |
31 | Aasberg-Petersen K, Stenby E, Fredenslund A. Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes[J]. Industrial & Engineering Chemistry Research, 1991, 30(9): 2180-2185. |
32 | 李以圭, 陆九芳. 电解质溶液理论[M]. 北京: 清华大学出版社, 2005. |
Li Y G, Lu J F. Electrolyte Solution Theory[M]. Beijing: Tsinghua University Press, 2005. | |
33 | Wiebe R, Gaddy V L. The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical phenomena[J]. Journal of the American Chemical Society, 1940, 62(4): 815-817. |
34 | Anderson G K. Solubility of carbon dioxide in water under incipient clathrate formation conditions[J]. Journal of Chemical & Engineering Data, 2002, 47(2): 219-222. |
35 | 顾飞燕. 加压下二氧化碳在氯化钠水溶液中的溶解度[J]. 高校化学工程学报, 1998, 12(2): 118-123. |
Gu F Y. Solubility of carbon dioxide in aqueous sodium chloride solution under high pressure[J]. Journal of Chemical Engineering of Chinese Universities, 1998, 12(2): 118-123. | |
36 | Servio P, Englezos P. Measurement of dissolved methane in water in equilibrium with its hydrate[J]. Journal of Chemical & Engineering Data, 2002, 47(1): 87-90. |
37 | Lu W J, Chou I M, Burruss R C. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 412-422. |
38 | Seo Y, Lee H E, Ryu B J. Hydration number and two-phase equilibria of CH4 hydrate in the deep ocean sediments[J]. Geophysical Research Letters, 2002, 29(8): 8-11. |
39 | Bergeron S, Servio P. CO2 and CH4 mole fraction measurements during hydrate growth in a semi-batch stirred tank reactor and its significance to kinetic modeling[J]. Fluid Phase Equilibria, 2009, 276(2): 150-155. |
40 | Aya I, Yamane K, Nariai H. Solubility of CO2 and density of CO2 hydrate at 30 MPa[J]. Energy, 1997, 22(2/3): 263-271. |
41 | Zhang Y, Holder G D, Warzinski R P. Phase equilibrium in two-phase, water-rich-liquid, hydrate systems: experiment and theory[J]. Industrial & Engineering Chemistry Research, 2008, 47(2): 459-469. |
42 | Wang T, Zhang L X, Sun L J, et al. A novel apparatus for measuring gas solubility in aqueous solution under multiphase conditions by isobaric method[J]. Review of Scientific Instruments, 2021, 92(10): 105101. |
43 | Kastanidis P, Romanos G E, Michalis V K, et al. Development of a novel experimental apparatus for hydrate equilibrium measurements[J]. Fluid Phase Equilibria, 2016, 424: 152-161. |
44 | Geng L T, Qu K, Lu W J, et al. In situ Raman spectroscopic study of the pressure effect on the concentration of CO2 in water at hydrate-liquid water equilibrium up to 900 bar[J]. Fluid Phase Equilibria, 2017, 438: 37-43. |
45 | Abdi J, Mohebbi V, Behbahani R M. Mole fraction measurement of methane and ethane in aqueous solutions of NaCl and MgCl2 during hydrate growth[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 307-324. |
46 | Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. |
[1] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
[2] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
[3] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[4] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[5] | Bangjun GUO, Linan JIA, Xi ZHANG. A review of NCM cathode and interface characteristics in all-solid-state lithium-ion battery with sulfide electrolytes [J]. CIESC Journal, 2024, 75(3): 743-759. |
[6] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[7] | Yewei DING, Wenbo KANG, Yutong SONG, Qinxi FAN, Yuanhui JI. Mechanism and screening of indomethacin self-assembled nanomedical drugs [J]. CIESC Journal, 2024, 75(11): 4141-4151. |
[8] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[9] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 160
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||