CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 25-39.DOI: 10.11949/0438-1157.20240625
• Reviews and monographs • Previous Articles Next Articles
Meilin SHI(), Lianda ZHAO, Xingjian DENG, Jingsong WANG(
), Haibin ZUO, Qingguo XUE
Received:
2024-06-06
Revised:
2024-06-30
Online:
2024-12-17
Published:
2024-12-25
Contact:
Jingsong WANG
石美琳(), 赵连达, 邓行健, 王静松(
), 左海滨, 薛庆国
通讯作者:
王静松
作者简介:
石美琳(2000—),女,硕士研究生,shimeilin1103@163.com
CLC Number:
Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process[J]. CIESC Journal, 2024, 75(S1): 25-39.
石美琳, 赵连达, 邓行健, 王静松, 左海滨, 薛庆国. 催化甲烷重整工艺的研究进展[J]. 化工学报, 2024, 75(S1): 25-39.
甲烷重整工艺 | 反应方程式 | H2/CO | 优点 | 缺点 |
---|---|---|---|---|
裂解重整 | CH4 | — | 不产生污染气体CO2的同时产生高附加值的碳产品, 绿色经济 | 碳的形成和沉积造成催化剂失活 |
蒸汽重整 | CH4+H2O | 3∶1 | 可以产生更高浓度的氢,运行效率高,产业成熟度高 | 外部热交换装置的额外费用高 |
干重整 | CH4+CO2 | 1∶1 | 同时使用了两种温室气体 | 高温条件下催化剂易积炭烧结 |
部分氧化重整 | CH4+1/2O2 | 2∶1 | 对硫杂质有更高的耐受性,能耗少,经济 | 纯氧成本高,气体混合物可能会发生爆炸 |
Table 1 Methane reforming process
甲烷重整工艺 | 反应方程式 | H2/CO | 优点 | 缺点 |
---|---|---|---|---|
裂解重整 | CH4 | — | 不产生污染气体CO2的同时产生高附加值的碳产品, 绿色经济 | 碳的形成和沉积造成催化剂失活 |
蒸汽重整 | CH4+H2O | 3∶1 | 可以产生更高浓度的氢,运行效率高,产业成熟度高 | 外部热交换装置的额外费用高 |
干重整 | CH4+CO2 | 1∶1 | 同时使用了两种温室气体 | 高温条件下催化剂易积炭烧结 |
部分氧化重整 | CH4+1/2O2 | 2∶1 | 对硫杂质有更高的耐受性,能耗少,经济 | 纯氧成本高,气体混合物可能会发生爆炸 |
项目 | 分类 | 作用 |
---|---|---|
活性组分 | 贵金属类:Pt、Ru、Rh等 非贵金属类:Ni、Fe、Co等 碳基:石墨、活性炭、金刚石等 | 催化甲烷裂解,能够解离活化甲烷分子,具有活化O—O、H—O键等的能力 |
载体 | Al2O3、SiO2、MgO、CeO、ZrO2、钙钛矿、介孔材料等 | 起到骨架的作用,可与活性组分相互作用,负载活性组分 |
助剂 | MgO、CaO、CeO2、La2O3等 | 提高催化剂活性、抗积炭抗烧结等能力 |
制备方法 | 溶胶-凝胶法、共沉淀法、浸渍法等 | 制备合成催化剂 |
Table 2 Classification of catalytic materials for methane cracking process
项目 | 分类 | 作用 |
---|---|---|
活性组分 | 贵金属类:Pt、Ru、Rh等 非贵金属类:Ni、Fe、Co等 碳基:石墨、活性炭、金刚石等 | 催化甲烷裂解,能够解离活化甲烷分子,具有活化O—O、H—O键等的能力 |
载体 | Al2O3、SiO2、MgO、CeO、ZrO2、钙钛矿、介孔材料等 | 起到骨架的作用,可与活性组分相互作用,负载活性组分 |
助剂 | MgO、CaO、CeO2、La2O3等 | 提高催化剂活性、抗积炭抗烧结等能力 |
制备方法 | 溶胶-凝胶法、共沉淀法、浸渍法等 | 制备合成催化剂 |
活性组分 | 载体 | 析碳量/g | 氢体积/cm3 |
---|---|---|---|
Fe | ZrO2 | 13.5 | 50.4 |
Fe | Al2O3 | 14 | 52.3 |
Fe | TiO2 | 17.4 | 64.9 |
Fe | SiO2 | 45 | 168 |
Fe | — | 16.5 | 61.6 |
Table 3 Research results of Ermakova et al[10]
活性组分 | 载体 | 析碳量/g | 氢体积/cm3 |
---|---|---|---|
Fe | ZrO2 | 13.5 | 50.4 |
Fe | Al2O3 | 14 | 52.3 |
Fe | TiO2 | 17.4 | 64.9 |
Fe | SiO2 | 45 | 168 |
Fe | — | 16.5 | 61.6 |
催化剂 | 制备方法 | 甲烷 转化率% | 催化剂寿命/h | 析碳量/g |
---|---|---|---|---|
Fe-Al2O3 | 浸渍法[Fe(NO3)3] | — | 2 | 1.1 |
Fe-SiO2 | 浸渍法[Fe(NO3)3] | — | 2 | 0.7 |
Fe-Al2O3 | 共沉淀法(NH4OH) | 4 | 23 | 26.5 |
Fe-Al2O3 | 共沉淀法(NaOH) | 6 | 6 | 3.3 |
Fe-Al2O3 | 共沉淀法(Na2CO3) | 4 | 6 | 2.3 |
Table 4 Influence of catalyst preparation method on catalytic performance of Fe catalyst tested in methane decomposition[18]
催化剂 | 制备方法 | 甲烷 转化率% | 催化剂寿命/h | 析碳量/g |
---|---|---|---|---|
Fe-Al2O3 | 浸渍法[Fe(NO3)3] | — | 2 | 1.1 |
Fe-SiO2 | 浸渍法[Fe(NO3)3] | — | 2 | 0.7 |
Fe-Al2O3 | 共沉淀法(NH4OH) | 4 | 23 | 26.5 |
Fe-Al2O3 | 共沉淀法(NaOH) | 6 | 6 | 3.3 |
Fe-Al2O3 | 共沉淀法(Na2CO3) | 4 | 6 | 2.3 |
工艺 | 催化剂 | 失活原因 | 文献 |
---|---|---|---|
催化裂解重整 | Ni-SiO2 | 活性中心组分Ni烧结、积炭 | [ |
催化裂解重整 | Fe-Al2O3 | 积炭 | [ |
蒸汽重整 | Fe | Fe氧化 | [ |
蒸汽重整 | Ni-Ce/Al | 活性中心组分Ni烧结 | [ |
蒸汽重整 | Ni/Ni-Ru | 活性中心组分Ni烧结 | [ |
蒸汽重整 | Ni-Ru/CeO2-Al2O3 | 硫中毒 | [ |
蒸汽重整 | Pt/CeO2-La2O3-Al2O3 | 活性中心组分Pt烧结 | [ |
干重整 | Fe-Al2O3 | 积炭 | [ |
干重整 | Ni-Fe | 积炭 | [ |
干重整 | Ni-SiO2/TiO2/MgO | 活性中心组分Ni烧结、积炭 | [ |
干重整 | Ni | 活性中心组分Ni烧结 | [ |
干重整 | Ni/MgO | Ni氧化 | [ |
干重整 | Ni-Co/TiO2 | Co氧化 | [ |
干重整 | Co/γ-Al2O3 | Co氧化 | [ |
Table 5 Partial studies on catalyst deactivation
工艺 | 催化剂 | 失活原因 | 文献 |
---|---|---|---|
催化裂解重整 | Ni-SiO2 | 活性中心组分Ni烧结、积炭 | [ |
催化裂解重整 | Fe-Al2O3 | 积炭 | [ |
蒸汽重整 | Fe | Fe氧化 | [ |
蒸汽重整 | Ni-Ce/Al | 活性中心组分Ni烧结 | [ |
蒸汽重整 | Ni/Ni-Ru | 活性中心组分Ni烧结 | [ |
蒸汽重整 | Ni-Ru/CeO2-Al2O3 | 硫中毒 | [ |
蒸汽重整 | Pt/CeO2-La2O3-Al2O3 | 活性中心组分Pt烧结 | [ |
干重整 | Fe-Al2O3 | 积炭 | [ |
干重整 | Ni-Fe | 积炭 | [ |
干重整 | Ni-SiO2/TiO2/MgO | 活性中心组分Ni烧结、积炭 | [ |
干重整 | Ni | 活性中心组分Ni烧结 | [ |
干重整 | Ni/MgO | Ni氧化 | [ |
干重整 | Ni-Co/TiO2 | Co氧化 | [ |
干重整 | Co/γ-Al2O3 | Co氧化 | [ |
1 | 张云, 胡浩权, 靳立军. 镍基催化剂的制备及催化甲烷裂解制氢研究[C]//第四届能源转化化学与技术研讨会.成都, 2021. |
Zhang Y, Hu H Q, Jin L J. Study on preparation of nickel-based catalysts and catalytic pyrolysis of methane for hydrogen production[C]//4th Symposium on Energy Conversion Chemistry and Technology. Chengdu, 2021. | |
2 | Qian J X, Chen T W, Enakonda L R, et al. Methane decomposition to produce CO x -free hydrogen and nano-carbon over metal catalysts: a review[J]. International Journal of Hydrogen Energy, 2020, 45(15): 7981-8001. |
3 | Ermakova M A, Ermakov D Y. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition[J]. Catalysis Today, 2002, 77(3): 225-235. |
4 | Jang H T, Cha W S. Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor[J]. Korean Journal of Chemical Engineering, 2007, 24(2): 374-377. |
5 | Ibrahim A A, Fakeeha A H, Al-Fatesh A S, et al. Methane decomposition over iron catalyst for hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7593-7600. |
6 | Jin L J, Si H H, Zhang J B, et al. Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10373-10380. |
7 | Pinilla J L, Utrilla R, Lázaro M J, et al. Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor[J]. Fuel Processing Technology, 2011, 92(8): 1480-1488. |
8 | Shah N, Panjala D, Huffman G P. Hydrogen production by catalytic decomposition of methane[J]. Energy & Fuels, 2001, 15(6): 1528-1534. |
9 | Pudukudy M, Yaakob Z, Akmal Z S. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts[J]. Applied Surface Science, 2015, 330: 418-430. |
10 | Ermakova M A, Ermakov D Y, Chuvilin A L, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments[J]. Journal of Catalysis, 2001, 201(2): 183-197. |
11 | Karaismailoğlu M, Figen H E, Baykara S Z. Methane decomposition over Fe-based catalysts[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34773-34782. |
12 | Al-Fatesh A S, Kasim S O, Ibrahim A A, et al. Catalytic methane decomposition over ZrO2 supported iron catalysts: effect of WO3 and La2O3 addition on catalytic activity and stability[J]. Renewable Energy, 2020, 155: 969-978. |
13 | Pudukudy M, Yaakob Z, Jia Q M, et al. Catalytic decomposition of methane over rare earth metal (Ce and La) oxides supported iron catalysts[J]. Applied Surface Science, 2019, 467: 236-248. |
14 | Liu L, Zachariah M R. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites As oxygen carrier material in chemical looping combustion[J]. Energy & Fuels, 2013, 27(8): 4977-4983. |
15 | Al-Fatesh A S, Fakeeha A H, Ibrahim A A, et al. Iron oxide supported on Al2O3 catalyst for methane decomposition reaction: effect of MgO additive and calcination temperature[J]. Journal of the Chinese Chemical Society, 2016, 63(2): 205-212. |
16 | Al-Fatesh A S, Fakeeha A H, Ibrahim A A, et al. Decomposition of methane over alumina supported Fe and Ni-Fe bimetallic catalyst: effect of preparation procedure and calcination temperature[J]. Journal of Saudi Chemical Society, 2018, 22(2): 239-247. |
17 | Avdeeva L B, Goncharova O V, Kochubey D I, et al. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition(Ⅱ): Evolution of the catalysts in reaction[J]. Applied Catalysis A: General, 1996, 141(1/2): 117-129. |
18 | Avdeeva L B, Reshetenko T V, Ismagilov Z R, et al. Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon[J]. Applied Catalysis A: General, 2002, 228(1/2): 53-63. |
19 | 孙杰, 孙春文, 李吉刚, 等. 甲烷水蒸气重整反应研究进展[J]. 中国工程科学, 2013, 15(2): 98-106. |
Sun J, Sun C W, Li J G, et al. Research development of steam methane reforming reactions[J]. Engineering Sciences, 2013, 15(2): 98-106. | |
20 | Yusuf B O, Umar M, Kotob E, et al. Recent advances in bimetallic catalysts for methane steam reforming in hydrogen production: current trends, challenges, and future prospects[J]. Chemistry, an Asian Journal, 2023: e202300641. |
21 | 陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 大连: 大连理工大学, 2014. |
Chen X. Preparation of Ni-based catalyst and application in steam reforming of methane[D]. Dalian: Dalian University of Technology, 2014. | |
22 | Meloni E, Martino M, Palma V. A short review on Ni based catalysts and related engineering issues for methane steam reforming[J]. Catalysts, 2020, 10(3): 352. |
23 | Jones G, Jakobsen J G, Shim S S, et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts[J]. Journal of Catalysis, 2008, 259(1): 147-160. |
24 | Sharma R, Kumar A, Upadhyay R K. Bimetallic Fe‐promoted catalyst for CO‐free hydrogen production in high‐temperature‐methanol steam reforming[J]. ChemCatChem, 2019, 11(18): 4568-4580. |
25 | Wei Z H, Sun J M, Li Y, et al. Bimetallic catalysts for hydrogen generation[J]. Chemical Society Reviews, 2012, 41(24): 7994-8008. |
26 | Garai M H S, Khosravi-Nikou M R, Shariati A. Chemical looping steam methane reforming via Ni‐ferrite supported on cerium and zirconium oxides[J]. Chemical Engineering & Technology, 2020, 43(9): 1813-1822. |
27 | Hu Z F, Miao Z W, Wu J W, et al. Nickel-iron modified natural ore oxygen carriers for chemical looping steam methane reforming to produce hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(80): 39700-39718. |
28 | Tsodikov M V, Kurdymov S S, Konstantinov G I, et al. Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: activity and structure evolution[J]. International Journal of Hydrogen Energy, 2015, 40(7): 2963-2670. |
29 | Konstantinov G I, Kurdyumov S S, Maksimov Y V, et al. Hydrogen sulfide-resistant bifunctional catalysts for the steam reforming of methane: activity and structural evolution[J]. Catalysis in Industry, 2018, 10(1): 1-8. |
30 | Djaidja A, Messaoudi H, Kaddeche D, et al. Study of Ni-M/MgO and Ni-M-Mg/Al (M=Fe or Cu) catalysts in the CH4-CO2 and CH4-H2O reforming[J]. International Journal of Hydrogen Energy, 2015, 40(14): 4989-4995. |
31 | Braga A, Armengol-Profitós M, Pascua-Solé L, et al. Bimetallic NiFe nanoparticles supported on CeO2 as catalysts for methane steam reforming[J]. ACS Applied Nano Materials, 2023, 6(9): 7173-7185. |
32 | Arandiyan H, Li J H, Ma L, et al. Methane reforming to syngas over LaNi x Fe1- x O3 (0≤x≤1) mixed-oxide perovskites in the presence of CO2 and O2 [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2103-2114. |
33 | Wang S B, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art[J]. Energy & Fuels, 1996, 10(4): 896-904. |
34 | 李肖晓. 甲烷二氧化碳重整镍基催化剂的研究[D]. 青岛:青岛科技大学, 2016. |
Li X X. Carbon dioxide reforming of methane over Ni-based catalysts[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
35 | 吴兴亮, 吕凌辉, 马清祥,等. 甲烷二氧化碳重整镍基催化剂的研究进展[J]. 洁净煤技术, 2021, 27(3): 129-137. |
Wu X L, Lyu L H, Ma Q X, et al. Research progress of nickel-based catalysts for carbon dioxide reforming of methane[J]. Clean Coal Technology, 2021, 27(3): 129-137. | |
36 | Tokunaga O, Osada Y, Ogasawara S. Reaction of CO2-CH4 as a high-level heat transport system[J]. Fuel, 1989, 68(8): 990-994. |
37 | Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2 [J]. Chemical Engineering Science, 1988, 43(11): 3049-3062. |
38 | Benrabaa R, Boukhlouf H, Bordes-Richard E, et al. Nanosized nickel ferrite catalysts for CO2 reforming of methane at low temperature: effect of preparation method and acid-base properties[C]//Scientific Bases for the Preparation of Heterogeneous Catalysts - Proceedings of the 10th International Symposium. Amsterdam: Elsevier, 2010: 301-304. |
39 | 郑幼松, 邹宗鹏, 吕莉, 等. 甲烷干重整抗失活镍基催化剂研究进展[J]. 天然气化工—C1化学与化工, 2021, 46(6): 1-8, 16. |
Zheng Y S, Zou Z P, Lv L, et al. Research progress of anti-deactivation nickel based catalysts for dry reforming of methane[J]. Natural Gas Chemical Industry, 2021, 46(6): 1-8, 16. | |
40 | Theofanidis S A, Galvita V V, Konstantopoulos C, et al. Fe-based nano-materials in catalysis[J]. Materials, 2018, 11(5): 831. |
41 | Buelens L C, Galvita V V, Poelman H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Science, 2016, 354(6311): 449-452. |
42 | Margossian T, Larmier K, Kim S M, et al. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance[J]. ACS Catalysis, 2017, 7(10): 6942-6948. |
43 | Tomishige K, Li D L, Tamura M, et al. Nickel-iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties[J]. Catalysis Science & Technology, 2017, 7(18): 3952-3979. |
44 | Theofanidis S A, Batchu R, Galvita V V, et al. Carbon gasification from Fe-Ni catalysts after methane dry reforming[J]. Applied Catalysis B: Environmental, 2016, 185: 42-55. |
45 | Theofanidis S A, Galvita V V, Poelman H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
46 | Hwang S, Hong U G, Lee J, et al. Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: effect of precipitation agent[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 2016-2021. |
47 | Kim S M, Abdala P M, Margossian T, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
48 | Zhang T, Liu Z X, Zhu Y A, et al. Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics[J]. Applied Catalysis B: Environmental, 2020, 264: 118497. |
49 | Wang H, Srinath N V, Poelman H, et al. Hierarchical Fe-modified MgAl2O4 as a Ni-catalyst support for methane dry reforming[J]. Catalysis Science & Technology, 2020, 10(20): 6987-7001. |
50 | Kim C, Kim Y. Promotional effect of iron on nickel-based catalyst for combined steam-carbon dioxide reformation of methane[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(9): 5506-5509. |
51 | Yang E, Noh Y, Lim S, et al. The effect of Fe in perovskite catalysts for steam CO2 reforming of methane[J]. Journal of Nanoscience and Nanotechnology, 2017, 16(2): 1938-1941. |
52 | Song X, Dong X L, Yin S L, et al. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane[J]. Applied Catalysis A: General, 2016, 526: 132-138. |
53 | Ribeiro T R, Ferreira Neto J B, Takano C, et al. C-O-H2 ternary diagram for evaluation of carbon activity in CH4-containing gas mixtures[J]. Journal of Materials Research and Technology, 2021, 13: 1576-1585. |
54 | Aiello R, Fiscus J E, Loye H C Z, et al. Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration[J]. Applied Catalysis A: General, 2000, 192(2): 227-234. |
55 | Yang X, Da J W, Yu H T, et al. Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process[J]. Fuel, 2016, 179: 353-361. |
56 | Luna E C, Becerra A M, Dimitrijewits M I. Methane steam reforming over rhodium promoted Ni/Al2O3 catalysts[J]. 1999, 67(2): 247-252. |
57 | Xie C, Chen Y S, Li Y, et al. Sulfur poisoning of CeO2-Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures[J]. Applied Catalysis A: General, 2010, 390(1/2): 210-218. |
58 | Mortola V B, Damyanova S, Zanchet D, et al. Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane[J]. Applied Catalysis B: Environmental, 2011, 107(3/4): 221-236. |
59 | 彭瑞峰. 镍铁体系构筑与促进甲烷干重整性能调控[D]. 徐州: 中国矿业大学, 2021. |
Peng R F. Construction of high-efficiency nickel-iron catalyst system and its methane dry reforming performance tailoring[D]. Xuzhou: China University of Mining and Technology, 2021. | |
60 | Swaan H M, Kroll V C H, Martin G A, et al. Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide[J]. Catalysis Today, 1994, 21(2/3): 571-578. |
61 | 李琳, 张露明, 张煜华, 等. 镍负载量对Ni/MgO(111)催化甲烷二氧化碳重整反应性能影响[J]. 燃料化学学报, 2015, 43(3): 315-322. |
Li Lin, Zhang L M, Zhang Y H, et al. Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2015, 43(3): 315-322. | |
62 | Takanabe K, Nagaoka K, Aika K I. Improved resistance against coke deposition of titania supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[J]. Catalysis Letters, 2005, 102(3): 153-157. |
63 | Ruckenstein E, Wang H Y. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts[J]. Journal of Catalysis, 2002, 205(2): 289-293. |
64 | 万云云. 甲烷二氧化碳重整工艺研究[D]. 淮南: 安徽理工大学, 2016. |
Wan Y Y. Study on reforming process of methane with carbon dioxide[D]. Huainan: Anhui University of Science & Technology, 2016. | |
65 | Sacco A, Geurts F W A H, Jablonski G A, et al. Carbon deposition and filament growth on Fe, Co, and Ni foils using CH4-H2-H2O-CO-CO2 gas mixtures[J]. Journal of Catalysis, 1989, 119(2): 322-341. |
66 | Tsipouriari V A, Efstathiou A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts[J]. Catalysis Today, 1994, 21(2/3): 579-587. |
67 | Zhou L, Enakonda L R, Harb M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
68 | Hasebe M, Ohtani H, Nishizawa T. Effect of magnetic transition on solubility of carbon in bcc Fe and fee Co-Ni alloys[J]. Metallurgical Transactions A, 1985, 16(5): 913-921. |
69 | Wirth C T, Bayer B C, Gamalski A D, et al. The phase of iron catalyst nanoparticles during carbon nanotube growth[J]. Chemistry of Materials, 2012, 24(24): 4633-4640. |
70 | Wrobel R J, Hełminiak A, Arabczyk W, et al. Studies on the kinetics of carbon deposit formation on nanocrystalline iron stabilized with structural promoters[J]. The Journal of Physical Chemistry C, 2014, 118(28): 15434-15439. |
71 | Sharma R, Moore E, Rez P, et al. Site-specific fabrication of Fe particles for carbon nanotube growth[J]. Nano Letters, 2009, 9(2): 689-694. |
72 | Arora S, Prasad R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts[J]. RSC Advances, 2016, 6(110): 108668-108688. |
73 | 朱清江, 李德康, 班延鹏, 等. 甲烷二氧化碳联合水蒸气重整过程中镍基催化剂硫中毒与再生研究[J]. 天然气化工—C1化学与化工, 2022, 47(4): 83-91. |
Zhu Q J, Li D K, Ban Y P, et al. Sulfur poisoning and regeneration of nickel-based catalyst in process of combined steam and carbon dioxide reforming of methane[J]. Natural Gas Chemical Industry, 2022, 47(4): 83-91. | |
74 | Olsson R G, Turkdogan E T. Catalytic effect of iron on decomposition of carbon monoxide( Ⅱ ): Effect of additions of H2, H2O, CO2, SO2 and H2S[J]. Metallurgical Transactions, 1974, 5(1): 21-26. |
75 | Karcher W, Glaude P. Inhibition of carbon deposition on iron and steel surfaces[J]. Carbon, 1971, 9(5): 617-625. |
76 | Bartholomew C H. Carbon deposition in steam reforming and methanation[J]. Catalysis Reviews, 1982, 24(1): 67-112. |
77 | Lucrédio A F, Bellido J D A, Assaf E M. Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions[J]. Applied Catalysis A: General, 2010, 388(1/2): 77-85. |
78 | 王锐, 刘雪斌, 陈燕馨, 等. 金属-载体相互作用对CH4/CO2重整反应中Rh基催化剂抗积炭性能的影响[J]. 催化学报, 2007, 28(10): 865-869. |
Wang R, Liu X B, Chen Y X, et al. Effect of metal-support interaction on coking resistance of Rh-based catalysts in CH4/CO2 reforming[J]. Chinese Journal of Catalysis, 2007, 28(10): 865-869. | |
79 | Gallego G S, Batiot-Dupeyrat C, Barrault J, et al. Dry reforming of methane over LaNi1- y B y O3 (B = Mg, Co) perovskites used as catalyst precursor[J]. Applied Catalysis A: General, 2008, 334(1/2): 251-258. |
80 | Wang Z Y, Cao X M, Zhu J H, et al. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory[J]. Journal of Catalysis, 2014, 311: 469-480. |
81 | 李彬. 基于提高甲烷重整活性的镍基催化剂的修饰及性能研究[D]. 广州: 华南理工大学, 2021. |
Li B. Modificationand catalytic performance study based on improving reactivity of nickel based catalysts for methane reforming[D]. Guangzhou: South China University of Technology, 2021. | |
82 | 高志博, 王晓波, 刘金明, 等. 甲烷水蒸气重整制合成气的研究进展[J]. 高师理科学刊, 2012, 32(2): 79-81, 89. |
Gao Z B, Wang X B, Liu J M, et al. The progress in study of Methane steam reforming to synthesis gas[J]. Journal of Science of Teachers' College and University, 2012, 32(2): 79-81, 89. | |
83 | Borowiecki T, Denis A, Rawski M, et al. Studies of potassium-promoted nickel catalysts for methane steam reforming: effect of surface potassium location[J]. Applied Surface Science, 2014, 300: 191-200. |
84 | Parizotto N V, Rocha K O, Damyanova S, et al. Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: effect of Ag on the control of coke formation[J]. Applied Catalysis A: General, 2007, 330: 12-22. |
85 | Wan H J, Li X J, Ji S F, et al. Effect of Ni loading and Ce x Zr1- x O2 promoter on Ni-based SBA-15 catalysts for steam reforming of methane[J]. Journal of Natural Gas Chemistry, 2007, 16(2): 139-147. |
86 | Shen J, Reule A A C, Semagina N. Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2 [J]. International Journal of Hydrogen Energy, 2019, 44(10): 4616-4629. |
87 | Takenaka S, Ogihara H, Yamanaka I, et al. Decomposition of methane over supported-Ni catalysts: effects of the supports on the catalytic lifetime[J]. Applied Catalysis A: General, 2001, 217(1/2): 101-110. |
88 | Choudhary T V, Goodman D W. CO-free production of hydrogen via stepwise steam reforming of methane[J]. Journal of Catalysis, 2000, 192(2): 316-321. |
[1] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[2] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[3] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[4] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[5] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[6] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[7] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[8] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[9] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[10] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[11] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[12] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[13] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[15] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 329
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||