CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 126-134.DOI: 10.11949/0438-1157.20240556
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinze LI(), Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU(
)
Received:
2024-05-26
Revised:
2024-07-04
Online:
2024-12-17
Published:
2024-12-25
Contact:
Wenjing DU
通讯作者:
杜文静
作者简介:
李新泽(2000—),男,硕士研究生,lxz2023@mail.sdu.edu.cn
基金资助:
CLC Number:
Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management[J]. CIESC Journal, 2024, 75(S1): 126-134.
李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134.
变量 | 数值 |
---|---|
工作流体 | 去离子水、丙酮 |
加热功率/W | 0~120(间隔20) |
充液率/% | 30、40、45、50、60 |
内径/外径/mm | 2/3 |
安装角度/(°) | 0、30、60、90 |
Table 1 Experimental test conditions
变量 | 数值 |
---|---|
工作流体 | 去离子水、丙酮 |
加热功率/W | 0~120(间隔20) |
充液率/% | 30、40、45、50、60 |
内径/外径/mm | 2/3 |
安装角度/(°) | 0、30、60、90 |
参数 | 最大相对不确定度 |
---|---|
充液率/% | 2.5% |
加热功率/W | 0.14% |
PHP热阻/(K/W) | 4.8% |
Table 2 Uncertainty of parameters
参数 | 最大相对不确定度 |
---|---|
充液率/% | 2.5% |
加热功率/W | 0.14% |
PHP热阻/(K/W) | 4.8% |
15 | Zhang M, Yang H H, Yin Y, et al. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids[J]. CIESC Journal, 2022, 73(3): 1136-1146. |
16 | Zhou Y, Yang H H, Liu L W, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid[J]. Powder Technology, 2021, 384: 414-422. |
17 | 杨洪海, 张苗, 刘利伟, 等. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
Yang H H, Zhang M, Liu L W, et al. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. | |
18 | Rudresha S, Babu E R, Thejaraju R. Experimental investigation and influence of filling ratio on heat transfer performance of a pulsating heat pipe[J]. Thermal Science and Engineering Progress, 2023, 38: 101649. |
19 | Shi W X, Li M, Chen H D, et al. Effect of evaporating-condensing length ratio and heat flux on starting and operating characteristic of pulsating heat pipe[J]. Applied Thermal Engineering, 2024, 246: 122963. |
20 | Mucci A, Kholi F K, Chetwynd-Chatwin J, et al. Numerical investigation of flow instability and heat transfer characteristics inside pulsating heat pipes with different numbers of turns[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120934. |
21 | Dai Y C, Zhang R, Qin Z Y, et al. Research on the thermal performance and stability of three-dimensional array pulsating heat pipe for active/passive coupled thermal management application[J]. Applied Thermal Engineering, 2024, 245: 122793. |
22 | Jang D S, Ham S H, Shin H H, et al. Thermal performance improvement of a radial pulsating heat pipe with diverging channels by adopting Tesla valves at various heat fluxes[J]. Applied Thermal Engineering, 2024, 237: 121799. |
23 | Zhang D, Wang L, Xu B R, et al. Experimental and simulation study on flow heat transfer characteristics of flat pulsating heat pipe with wide and narrow interphase channels[J]. Applied Thermal Engineering, 2024, 245: 122806. |
24 | Yang H H, Wang J, Wang N, et al. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer[J]. Energy and Buildings, 2019, 197: 1-6. |
25 | Shang F M, Yang Q J, Fan S L, et al. Experimental study on novel pulsating heat pipe radiator for horizontal CPU cooling under different wind speeds[J]. Thermal Science, 2022, 26(1 Part B): 449-462. |
1 | Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions[J]. Applied Physics Letters, 1962, 1(4): 82-83. |
2 | Juntunen E, Tapaninen O, Sitomaniemi A, et al. Copper-core MCPCB with thermal vias for high-power COB LED modules[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1410-1417. |
3 | Kyatam S, Camacho P, Rodrigues L, et al. Thermal analysis of high power LEDs using different PCB materials[C]//2017 European Conference on Circuit Theory and Design (ECCTD). Catania, Italy: IEEE, 2017: 1-4. |
4 | Li J, Lin F, Wang D M, et al. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips[J]. Applied Thermal Engineering, 2013, 56(1/2): 18-26. |
5 | Ben Abdelmlek K, Araoud Z, Charrada K, et al. Optimization of the thermal distribution of multi-chip LED package[J]. Applied Thermal Engineering, 2017, 126: 653-660. |
6 | Ben Abdelmlek K, Araoud Z, Ghnay R, et al. Effect of thermal conduction path deficiency on thermal properties of LEDs package[J]. Applied Thermal Engineering, 2016, 102: 251-260. |
7 | Wang C, Yuan K J, Song Q, et al. Performance of pulsating heat pipe with a stimulus of auxiliary heat load for battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2024, 223: 125190. |
8 | Solanki A, Kapadia R G. Review of the effect of foldability and working fluid on the performance of flexible pulsating heat pipe for foldable applications[J]. Materials Today: Proceedings, 2023, 82: 234-240. |
9 | Kholi F K, Park S, Yang J S, et al. A detailed review of pulsating heat pipe correlations and recent advances using artificial neural network for improved performance prediction[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124010. |
10 | Fan Y C, Wang Z G, Guo J W, et al. Capture of kinetic behavior of ethanol-based copper oxides in pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125392. |
11 | Wang L P, Cai Y, Zhan H R. Lorenz-like equation of two-phase flow in a single closed loop pulsating heat pipe[J]. International Journal of Thermal Sciences, 2023, 186: 108132. |
12 | Xu Y Y, Xue Y Q, Qi H, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
13 | Lyu B K, Xu D, Wang W, et al. Experimental investigation of a serial-parallel configuration helium pulsating heat pipe[J]. Cryogenics, 2023, 131: 103668. |
14 | 赵佳腾, 吴晨辉, 戴宇成, 等. 脉动热管强化传热及其应用研究进展[J]. 化工学报, 2022, 73(2): 535-565. |
Zhao J T, Wu C H, Dai Y C, et al. Research progress on heat transfer enhancement and application of oscillating heat pipe[J]. CIESC Journal, 2022, 73(2): 535-565. | |
15 | 张苗, 杨洪海, 尹勇, 等. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146. |
26 | Chen Y, He Y Q, Zhu X Q. Flower-type pulsating heat pipe for a solar collector[J]. International Journal of Energy Research, 2020, 44(9): 7734-7745. |
27 | Mahajan G, Cho H, Smith A, et al. Experimental analysis of atypically long finned oscillating heat pipe for ventilation waste heat recovery application[J]. Journal of Thermal Science, 2020, 29(3): 667-675. |
28 | 张双星, 刘舫辰, 张义飞, 等. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
Zhang S X, Liu F C, Zhang Y F, et al. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe[J]. CIESC Journal, 2023, 74(S1): 165-171. | |
29 | Lv L C, Li J, Zhou G H. A robust pulsating heat pipe cooler for integrated high power LED chips[J]. Heat and Mass Transfer, 2017, 53(11): 3305-3313. |
30 | Wang H, Qu J, Peng Y Q, et al. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application[J]. Energy Conversion and Management, 2019, 189: 215-222. |
31 | Lin Z R, Wang S F, Huo J P, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes[J]. Applied Thermal Engineering, 2011, 31(14/15): 2221-2229. |
32 | 林梓荣. 自激式振荡流热管热输送性能研究[D]. 广州: 华南理工大学, 2012. |
Lin Z R. Study on heat transport capability of self-exciting mode oscillating-flow heat pipe[D]. Guangzhou: South China University of Technology, 2012. | |
33 | 李新泽, 张双星, 杨洪海, 等. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
Li X Z, Zhang S X, Yang H H, et al. Experimental study on performance of new type of pulsating heat pipe for battery cooling[J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[1] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[2] | Yan LI, Lijun ZHENG, Enyong ZHANG, Yunfei WANG. Model and experimental study of fluid permeation characteristics in a deep-water oil and gas tube [J]. CIESC Journal, 2024, 75(S1): 118-125. |
[3] | Mengfan WANG, Lixin ZHANG. Analysis of leakage phenomenon in hose pumps [J]. CIESC Journal, 2024, 75(S1): 170-182. |
[4] | Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC [J]. CIESC Journal, 2024, 75(S1): 183-194. |
[5] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[6] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[7] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
[8] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[9] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[10] | Xiaoyu JIANG, Huanting LUO, Rui HONG, Wenjing DU. Specific heat of diol coolant determined by modulated differential scanning calorimetry [J]. CIESC Journal, 2024, 75(S1): 40-46. |
[11] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[12] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[13] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[14] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[15] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||