CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4205-4216.DOI: 10.11949/0438-1157.20240560
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jingjing HOU(), Da RUAN, Ziyi BO, Xuehu MA(
)
Received:
2024-05-26
Revised:
2024-07-22
Online:
2024-12-26
Published:
2024-11-25
Contact:
Xuehu MA
通讯作者:
马学虎
作者简介:
侯静静(1995—),女,博士研究生,Houjj0420@mail.dlut.edu.cn
基金资助:
CLC Number:
Jingjing HOU, Da RUAN, Ziyi BO, Xuehu MA. Influence of buoyancy direction on droplet coaxiality in a coaxial microchannel[J]. CIESC Journal, 2024, 75(11): 4205-4216.
侯静静, 阮达, 薄紫一, 马学虎. 浮力方向对同轴微通道内液滴同轴度的影响规律[J]. 化工学报, 2024, 75(11): 4205-4216.
试剂 | 密度/(g/cm3) | 黏度/(mPa∙s) | 表面张力/(mN/m) |
---|---|---|---|
ODE | 0.789 | 2.840 | 27.9 |
乙醇 | 0.789 | 1.170 | 22.3 |
Galden HT-200 | 1.790 | 4.296 | 16.0 |
Table 1 Physical property parameters of reagents
试剂 | 密度/(g/cm3) | 黏度/(mPa∙s) | 表面张力/(mN/m) |
---|---|---|---|
ODE | 0.789 | 2.840 | 27.9 |
乙醇 | 0.789 | 1.170 | 22.3 |
Galden HT-200 | 1.790 | 4.296 | 16.0 |
Fig.8 Cloud image and velocity diagram of the internal velocity of the droplet (the red curve is the droplet boundary,Qd=0.178 ml/min,Qc=1.514 ml/min)
Fig.11 Comparison of the deviation between the predicted value and the experimental value of the droplet size prediction model under the action of buoyancy force
1 | Ye X, Cheng Y Q, Chen Y S, et al. Microcavity-enabled local oscillation of Taylor bubbles in a microchannel[J]. Industrial & Engineering Chemistry Research, 2021, 60(2): 1055-1066. |
2 | Liang Q Q, Bu Y F, Men Z W, et al. Taylor flow bubble transport characteristics of low partial pressure CO2 absorption in a serpentine micro contactor[J]. Chemical Engineering and Processing-Process Intensification, 2022, 181: 109168. |
3 | Liu Y Y, Yao C Q, Chen G W. Gas-liquid-liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors[J]. Chinese Journal of Chemical Engineering, 2022, 50: 85-94. |
4 | 陈昊, 杨星宇, 扆豪哲, 等. 微液滴强化传质与化学反应的研究进展[J]. 中国科学: 化学, 2024, 54(1): 133-146. |
Chen H, Yang X Y, Yi H Z, et al. Research progress of enhanced mass transfer and chemical reaction of microdroplet[J]. Scientia Sinica: Chimica, 2024, 54(1): 133-146. | |
5 | Geng Y H, Guo J Z, Ling S D, et al. A nano-liter droplet-based microfluidic reactor serves as continuous large-scale production of inorganic perovskite nanocrystals[J]. Science China Materials, 2022, 65(10): 2746-2754. |
6 | Zhang K W, Gao Y H, Pinho B, et al. The importance of transport phenomena on the flow synthesis of monodispersed sharp blue-emitting perovskite CsPbBr3 nanoplatelets[J]. Chemical Engineering Journal, 2023, 451: 138752. |
7 | Geng Y H, Guo J Z, Wang H Q, et al. Large-scale production of ligand-engineered robust lead halide perovskite nanocrystals by a droplet-based microreactor system[J]. Small, 2022, 18(19): 2200740. |
8 | Maceiczyk R M, Dümbgen K, Lignos I, et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(19): 8433-8439. |
9 | Lignos I, Protesescu L, Emiroglu D B, et al. Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform[J]. Nano Letters, 2018, 18(2): 1246-1252. |
10 | Bezinge L, Maceiczyk R M, Lignos I, et al. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18869-18878. |
11 | Lignos I, Morad V, Shynkarenko Y, et al. Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform[J]. ACS Nano, 2018, 12(6): 5504-5517. |
12 | Wang C Y, Meng W, Li Y C, et al. Ultra-small α-CsPbI3 perovskite quantum dots with stable, bright and pure red emission for Rec. 2020 display backlights[J]. Nanoscale, 2023, 15(4): 1661-1668. |
13 | Lien S Y, Chen Y H, Chen W R, et al. Effect of growth temperature on the characteristics of CsPbI3-quantum dots doped perovskite film[J]. Molecules, 2021, 26(15): 4439. |
14 | Wang S, Zhao Q, Hazarika A, et al. Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand[J]. Nature Communications, 2023, 14(1): 2216. |
15 | Guo W X, Zhu C Y, Fu T T, et al. Coalescence dynamics of two droplets of different viscosities in T-junction microchannel with a funnel-typed expansion chamber[J]. Chinese Journal of Chemical Engineering, 2021, 38: 43-52. |
16 | Filatov N A, Evstrapov A A, Bukatin A S. Negative pressure provides simple and stable droplet generation in a flow-focusing microfluidic device[J]. Micromachines, 2021, 12(6): 662. |
17 | Venkateshwarlu A, Bharti R P. Effects of capillary number and flow rates on the hydrodynamics of droplet generation in two-phase cross-flow microfluidic systems[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129: 64-79. |
18 | Sattari A, Hanafizadeh P. Controllable preparation of double emulsion droplets in a dual-coaxial microfluidic device[J]. Journal of Flow Chemistry, 2021, 11(4): 807-821. |
19 | 宋仕容, 刘宏臣, 米晓天, 等. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
Song S R, Liu H C, Mi X T, et al. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel[J]. CIESC Journal, 2024, 75(2): 566-574. | |
20 | Takagi M, Maki T, Miyahara M, et al. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 269-276. |
21 | Moon S K, Cheong I W, Choi S W. Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454: 84-88. |
22 | Muijlwijk K, Berton-Carabin C, Schroën K. Cross-flow microfluidic emulsification from a food perspective[J]. Trends in Food Science & Technology, 2016, 49: 51-63. |
23 | Dinh T, Cubaud T. Role of interfacial tension on viscous multiphase flows in coaxial microfluidic channels[J]. Langmuir, 2021, 37(24): 7420-7429. |
24 | Ferraro D, Serra M, Filippi D, et al. Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand[J]. Lab on a Chip, 2018, 19(1): 136-146. |
25 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
26 | Khorrami A S, Rezai P. Oscillating dispersed-phase co-flow microfluidic droplet generation: jet length reduction effect[J]. Soft Matter, 2018, 14(48): 9870-9876. |
27 | Chen Y P, Wu L Y, Zhang C B. Emulsion droplet formation in coflowing liquid streams[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2013, 87(1): 013002. |
28 | Pan D W, Chen Q, Zhang Y J, et al. Investigation on millimeter-scale W1/O/W2 compound droplets generation in a co-flowing device with one-step structure[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 366-374. |
29 | Fu G, Chen F F, Ni L, et al. Liquid-liquid two-phase flow and size distribution of droplets in milli-channels: effect of gravity[J]. International Journal of Multiphase Flow, 2022, 150: 104005. |
30 | Li L T, Zhang J S, Wang K, et al. Droplet formation of H2SO4/alkane system in a T-junction microchannel: gravity effect[J]. AIChE Journal, 2016, 62(12): 4564-4573. |
31 | Ge H, Chen J W, Wang Y H, et al. Influence of coaxiality on internal mixing of coflow generated droplets[J]. Applied Physics Letters, 2024, 124(7): 074102. |
32 | Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D: Applied Physics, 2007, 40(19): R319-R336. |
33 | Wu Z, Cao Z, Sunden B. Flow patterns and slug scaling of liquid-liquid flow in square microchannels[J]. International Journal of Multiphase Flow, 2019, 112: 27-39. |
34 | Chagot L, Quilodrán-Casas C, Kalli M, et al. Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach[J]. Lab on a Chip, 2022, 22(20): 3848-3859. |
[1] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[2] | Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC [J]. CIESC Journal, 2024, 75(S1): 183-194. |
[3] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[4] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[5] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[6] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
[7] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[8] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[9] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[10] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[11] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[12] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[13] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[14] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
[15] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 371
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||