CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3437-3451.DOI: 10.11949/0438-1157.20240147
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zihou ZHU(), Feng PAN, Pengfei ZHAO, Ying HE(
)
Received:
2024-01-31
Revised:
2024-04-20
Online:
2024-11-04
Published:
2024-10-25
Contact:
Ying HE
通讯作者:
贺缨
作者简介:
朱子厚(1999—),男,硕士研究生,3325519805@qq.com
基金资助:
CLC Number:
Zihou ZHU, Feng PAN, Pengfei ZHAO, Ying HE. Fluid-thermal coupling numerical study on effect of heater surface materials on nucleate boiling heat transfer[J]. CIESC Journal, 2024, 75(10): 3437-3451.
朱子厚, 潘丰, 赵鹏飞, 贺缨. 加热表面材质对核态沸腾换热影响的流-热耦合数值研究[J]. 化工学报, 2024, 75(10): 3437-3451.
材质 | 密度 ρs/(kg/m3) | 热导率 λs/(W/(m·K)) | 比热容 cp,s/(J/(kg·K)) | 热扩散率 DT/(m2/s) |
---|---|---|---|---|
铜 | 8930 | 393 | 386 | 1.140×10-4 |
铝 | 2690 | 247 | 900 | 1.020×10-4 |
硅 | 2340 | 110 | 750 | 6.268×10-5 |
Table 1 Thermophysical parameters of different materials
材质 | 密度 ρs/(kg/m3) | 热导率 λs/(W/(m·K)) | 比热容 cp,s/(J/(kg·K)) | 热扩散率 DT/(m2/s) |
---|---|---|---|---|
铜 | 8930 | 393 | 386 | 1.140×10-4 |
铝 | 2690 | 247 | 900 | 1.020×10-4 |
硅 | 2340 | 110 | 750 | 6.268×10-5 |
材质 | 密度 ρs/(kg/m3) | 热导率 λs/(W/(m·K)) | 比热容 cp.s/(J/(kg·K)) | 热扩散率 DT/(m2/s) |
---|---|---|---|---|
石墨烯 | 2300 | 1584 | 710 | 9.70×10-4 |
Table 2 Thermophysical parameters of graphene
材质 | 密度 ρs/(kg/m3) | 热导率 λs/(W/(m·K)) | 比热容 cp.s/(J/(kg·K)) | 热扩散率 DT/(m2/s) |
---|---|---|---|---|
石墨烯 | 2300 | 1584 | 710 | 9.70×10-4 |
孔穴临界活化过热度/K | 平均过热度差距/% | ||
---|---|---|---|
CG | Cu | Al | |
5.0 | 28.37% | 3.18% | 2.62% |
7.5 | 10.47% | 3.12% | 2.55% |
10.0 | 5.95% | 1.38% | 0.53% |
Table 3 Differences in average superheat on heater surfaces
孔穴临界活化过热度/K | 平均过热度差距/% | ||
---|---|---|---|
CG | Cu | Al | |
5.0 | 28.37% | 3.18% | 2.62% |
7.5 | 10.47% | 3.12% | 2.55% |
10.0 | 5.95% | 1.38% | 0.53% |
Fig.19 Instantaneous thermal response inside heater during boiling process on copper-graphene surface, copper surface, aluminum surface and silicon surface
1 | Goel P, Nayak A K, Kulkarni P P, et al. Experimental study on bubble departure characteristics in subcooled nucleate pool boiling[J]. International Journal of Multiphase Flow, 2017, 89: 163-176. |
2 | Abbassi W, Besbes S, Ben Aissia H, et al. Study of the rise of a single/multiple bubbles in quiescent liquids using the VOF method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(6): 272. |
3 | Cooper M G. The microlayer and bubble growth in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 1969, 12(8): 915-933. |
4 | Das A K, Das P K, Saha P. Heat transfer during pool boiling based on evaporation from micro and macrolayer[J]. International Journal of Heat and Mass Transfer, 2006, 49(19/20): 3487-3499. |
5 | Hänsch S, Walker S. Microlayer formation and depletion beneath growing steam bubbles[J]. International Journal of Multiphase Flow, 2019, 111: 241-263. |
6 | Jung S, Kim H. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 365-375. |
7 | Bongarala M, Hu H, Weibel J A, et al. Microlayer evaporation governs heat transfer enhancement during pool boiling from microstructured surfaces[J]. Applied Physics Letters, 2022, 120(22): 221602. |
8 | Urbano A, Tanguy S, Colin C. Direct numerical simulation of nucleate boiling in zero gravity conditions[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118521. |
9 | Chen Z H, Utaka Y. On heat transfer and evaporation characteristics in the growth process of a bubble with microlayer structure during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2015, 81: 750-759. |
10 | Zou A, Singh D P, Maroo S C. Early evaporation of microlayer for boiling heat transfer enhancement[J]. Langmuir, 2016, 32(42): 10808-10814. |
11 | 潘丰, 王超杰, 母立众, 等. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527. |
Pan F, Wang C J, Mu L Z, et al. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527. | |
12 | Zhang L, Li Z D, Li K, et al. Influence of transient thermal response of solid wall on bubble dynamics in pool boiling[J]. The Journal of Computational Multiphase Flows, 2014, 6(4): 361-375. |
13 | Zhang L, Li Z D, Li K, et al. Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling[J]. Applied Thermal Engineering, 2015, 88: 118-126. |
14 | 黄潇立, 陈泽亮, 桂南, 等. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报 (自然科学版), 2022, 62(10): 1681-1690. |
Huang X L, Chen Z L, Gui N, et al. Review of graphene enhanced boiling heat transfer[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(10): 1681-1690. | |
15 | 王雪鉴, 袁朝飞, 赵亚楠, 等. 铜表面-氧化石墨烯纳米涂层池沸腾换热特性实验[J]. 原子能科学技术, 2024, 58(5): 1033-1039. |
Wang X J, Yuan C F, Zhao Y N, et al. Experimental study on pool boiling heat transfer characteristics of graphite oxide nano coating on copper surface[J]. Atomic Energy Science and Technology, 2024, 58(5): 1033-1039. | |
16 | Ahn H S, Kim J M, Kim J M, et al. Boiling characteristics on the reduced graphene oxide films[J]. Experimental Thermal and Fluid Science, 2015, 60: 361-366. |
17 | Ahn H S, Kim J M, Kim T, et al. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling[J]. Scientific Reports, 2014, 4: 6276. |
18 | 张伟, 牛志愿, 李亚, 等. 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3764. |
Zhang W, Niu Z Y, Li Y, et al. Pool boiling heat transfer characteristics on graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3764. | |
19 | Jaikumar A, Gupta A, Kandlikar S G, et al. Scale effects of graphene and graphene oxide coatings on pool boiling enhancement mechanisms[J]. International Journal of Heat and Mass Transfer, 2017, 109: 357-366. |
20 | Huang X L, Chen Z L, Gui N, et al. Pool boiling experiment characteristics on the pure copper surface[J]. Experimental and Computational Multiphase Flow, 2023, 5(2): 192-198. |
21 | 徐济鋆. 沸腾传热和气液两相流[M]. 2版. 北京: 原子能出版社, 2001: 241-271. |
Xu J J. Boiling Heat Transfer and Two-phase Flow [M]. 2nd ed. Beijing: Atomic Press, 2001: 241-271. | |
22 | Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230. |
23 | He Y, Shoji M, Maruyama S. Numerical study of high heat flux pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2001, 44(12): 2357-2373. |
24 | Sato Y, Niceno B. A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52. |
25 | Utaka Y, Hu K, Chen Z H, et al. Measurement of contribution of microlayer evaporation applying the microlayer volume change during nucleate pool boiling for water and ethanol[J]. International Journal of Heat and Mass Transfer, 2018, 125: 243-247. |
26 | Koizumi Y, Shōji M, Monde M, et al. Boiling: Research and Advances[M]. Amsterdam: Elsevier, 2017. |
27 | Pan F, Mu L Z, He Y, et al. A thermal-hydrodynamic coupling method for simulating the interplay between bubble departure and wall temperature variation in nucleate boiling[J]. Journal of Hydrodynamics, 2021, 33(2): 243-258. |
28 | 潘丰. 汽化核心对核态沸腾换热影响的流-热耦合研究[D]. 大连: 大连理工大学, 2021. |
Pan F. Thermal-hydrodynamic study on the interplay of nucleation sites and heat transfer characteristics of nucleate boiling[D]. Dalian: Dalian University of Technology, 2021. | |
29 | Zhao P F, Zhu Z H, Jamali J A, et al. Experimental study of single-bubble dynamics and microlayer characteristics in pool boiling on different wettability surfaces[C]//Proceedings of 7th ASME International Conference of Micro/Nanoscale Heat and Mass Transfer. Nottingham, UK, 2024. |
30 | Jiang Y Y, Osada H, Inagaki M, et al. Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 640-652. |
31 | Allred T P, Weibel J A, Garimella S V. The effect of dynamic wetting behavior on boiling heat transfer mechanisms during bubble growth and departure[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122276. |
32 | Aktinol E, Dhir V K. Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid[J]. Microgravity Science and Technology, 2012, 24(4): 255-265. |
33 | Li Z D, Zhang L, Zhao J F, et al. Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72[J]. International Journal of Heat and Mass Transfer, 2015, 84: 409-418. |
[1] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
[2] | Wenning LI, Min LU, Yu YIN. High dispersion of cobalt on the reduced graphene oxide for advanced oxidation degradation of organic pollutants [J]. CIESC Journal, 2024, 75(10): 3793-3803. |
[3] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[6] | Peipei CHEN, Qiuying WANG, Zeqing XIAO, Sijia ZHOU, Xiaoliang ZHANG. Tailoring preparation of graphene quantum dot composite membranes: influence of precursors [J]. CIESC Journal, 2023, 74(12): 5006-5015. |
[7] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[8] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
[9] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[10] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[11] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[12] | Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure [J]. CIESC Journal, 2022, 73(3): 1127-1135. |
[13] | Zhen YANG, Yuanpeng YAO, Yun LI, Huiying WU. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium [J]. CIESC Journal, 2022, 73(3): 1093-1101. |
[14] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[15] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 324
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||