CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3783-3792.DOI: 10.11949/0438-1157.20240453
• Energy and environmental engineering • Previous Articles Next Articles
Yingying LIU1(), Yue QIAN1, Xinyu DONG1, Xinlong QIAN1, Yuan HE1, Meijun LIU1, Haifeng ZHANG1(
), Zhi WANG2(
)
Received:
2024-04-25
Revised:
2024-06-30
Online:
2024-11-04
Published:
2024-10-25
Contact:
Haifeng ZHANG, Zhi WANG
刘莹莹1(), 钱月1, 董鑫宇1, 乾鑫龙1, 何媛1, 刘美君1, 张海丰1(
), 王志2(
)
通讯作者:
张海丰,王志
作者简介:
刘莹莹(1991—),女,博士研究生,讲师,liuyingying@tju.edu.cn
基金资助:
CLC Number:
Yingying LIU, Yue QIAN, Xinyu DONG, Xinlong QIAN, Yuan HE, Meijun LIU, Haifeng ZHANG, Zhi WANG. Preparation of anti-biofouling reverse osmosis membrane by surface modification with quorum sensing inhibitor[J]. CIESC Journal, 2024, 75(10): 3783-3792.
刘莹莹, 钱月, 董鑫宇, 乾鑫龙, 何媛, 刘美君, 张海丰, 王志. 利用群体感应抑制剂表面改性制备抗生物污染反渗透膜[J]. 化工学报, 2024, 75(10): 3783-3792.
膜 | 元素组成/% | O/N比 | ||
---|---|---|---|---|
C | N | O | ||
RO-VG | 76.81 | 11.60 | 11.35 | 0.978 |
RO-0MA | 77.00 | 10.31 | 12.42 | 1.205 |
MA | 72.73 | 9.09 | 18.18 | 2.00 |
RO-5MA | 76.67 | 10.46 | 12.68 | 1.212 |
RO-10MA | 76.97 | 11.15 | 11.61 | 1.041 |
RO-15MA | 77.51 | 10.18 | 12.00 | 1.179 |
Table 1 Composition of chemical elements on surface of original membrane and modified membranes prepared with different MA concentrations
膜 | 元素组成/% | O/N比 | ||
---|---|---|---|---|
C | N | O | ||
RO-VG | 76.81 | 11.60 | 11.35 | 0.978 |
RO-0MA | 77.00 | 10.31 | 12.42 | 1.205 |
MA | 72.73 | 9.09 | 18.18 | 2.00 |
RO-5MA | 76.67 | 10.46 | 12.68 | 1.212 |
RO-10MA | 76.97 | 11.15 | 11.61 | 1.041 |
RO-15MA | 77.51 | 10.18 | 12.00 | 1.179 |
膜 | 平均粗糙度/nm | 均方根粗糙度/nm |
---|---|---|
RO-VG | 42.71±0.76 | 54.36±0.39 |
RO-0MA | 35.11±0.29 | 44.54±0.51 |
RO-5MA | 32.89±0.30 | 41.53±2.38 |
RO-10MA | 33.04±0.17 | 42.19±1.42 |
RO-15MA | 37.09±0.57 | 47.60±0.89 |
Table 2 Surface roughness of reverse osmosis membranes
膜 | 平均粗糙度/nm | 均方根粗糙度/nm |
---|---|---|
RO-VG | 42.71±0.76 | 54.36±0.39 |
RO-0MA | 35.11±0.29 | 44.54±0.51 |
RO-5MA | 32.89±0.30 | 41.53±2.38 |
RO-10MA | 33.04±0.17 | 42.19±1.42 |
RO-15MA | 37.09±0.57 | 47.60±0.89 |
膜 | 相对表面积 | 界面自由能/(mJ/m2) |
---|---|---|
RO-VG | 1.393±0.011 | 97.39 |
RO-0MA | 1.342±0.009 | 106.43 |
RO-5MA | 1.309±0.022 | 103.29 |
RO-10MA | 1.316±0.006 | 99.82 |
RO-15MA | 1.338±0.005 | 96.29 |
Table 3 Relative surface area and interfacial free energy of reverse osmosis membranes
膜 | 相对表面积 | 界面自由能/(mJ/m2) |
---|---|---|
RO-VG | 1.393±0.011 | 97.39 |
RO-0MA | 1.342±0.009 | 106.43 |
RO-5MA | 1.309±0.022 | 103.29 |
RO-10MA | 1.316±0.006 | 99.82 |
RO-15MA | 1.338±0.005 | 96.29 |
Fig.12 Changes of water flux and salt rejection of reverse osmosis membranes (membranes were immersed with Songhua River water containing nutrient solution for 2 d and 5 d)
Fig.13 Changes of water flux and salt rejection of reverse osmosis membranes (membranes were immersed with Songhua River water containing nutrient solution and shaked for 2 d)
1 | Wang H S, Yang J X, Zhang H, et al. Membrane-based technology in water and resources recovery from the perspective of water social circulation: a review[J]. Science of the Total Environment, 2024, 908: 168277. |
2 | 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1): 1-14. |
Gao C J, Zhou Y, Liu L F. Recent development and prospect of seawater reverse osmosis desalination technology[J]. Journal of Ocean Technology, 2016, 35(1): 1-14. | |
3 | Lim Y J, Goh K, Kurihara M, et al. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication — a review[J]. Journal of Membrane Science, 2021, 629: 119292. |
4 | Werber J R, Deshmukh A, Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environmental Science & Technology Letters, 2016, 3(4): 112-120. |
5 | Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review[J]. Journal of Membrane Science, 2021, 640: 119765. |
6 | Gorgojo P, Jimenez-Solomon M F, Livingston A G. Polyamide thin film composite membranes on cross-linked polyimide supports: improvement of RO performance via activating solvent[J]. Desalination, 2014, 344: 181-188. |
7 | Cui Y, Liu X Y, Chung T S. Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes[J]. Chemical Engineering Journal, 2014, 242: 195-203. |
8 | Chong C Y, Lau W J, Yusof N, et al. Studies on the properties of RO membranes for salt and boron removal: influence of thermal treatment methods and rinsing treatments[J]. Desalination, 2018, 428: 218-226. |
9 | Liu Y Y, Xin Z, Wang M, et al. Optimizing separation layer structure of polyamide composite membrane for high permselectivity based on post-treatment: a review[J]. Desalination, 2024, 580: 117585. |
10 | Mukherjee D, Kulkarni A, Gill W N. Flux enhancement of reverse osmosis membranes by chemical surface modification[J]. Journal of Membrane Science, 1994, 97: 231-249. |
11 | Shin M G, Park S H, Kwon S J, et al. Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol[J]. Journal of Membrane Science, 2019, 578: 220-229. |
12 | Zhao S F, Liao Z P, Fane A, et al. Engineering antifouling reverse osmosis membranes: a review[J]. Desalination, 2021, 499: 114857. |
13 | Liu C, Wang W J, Yang B, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies[J]. Water Research, 2021, 195: 116976. |
14 | 任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486. |
Ren L Y, Zhao S, Wang Z, et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J]. CIESC Journal, 2020, 71(2): 475-486. | |
15 | Li T T, Sun X J, Chen H T, et al. Methyl anthranilate: a novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria [J]. Food Microbiology, 2020, 86: 103356. |
16 | Chen C, Yang Y, Lee C H, et al. Functionalization of seawater reverse osmosis membrane with quorum sensing inhibitor to regulate microbial community and mitigate membrane biofouling[J]. Water Research, 2024, 253: 121358. |
17 | Katebian L, Gomez E, Skillman L, et al. Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling[J]. Desalination, 2016, 393: 135-143. |
18 | Feng Y R, Liang J, Liu X H, et al. Graphene oxide / methyl anthranilate modified anti-biofouling membrane possesses dual functions of anti-adhesion and quorum quenching[J]. Journal of Membrane Science, 2023, 668: 121265. |
19 | Li C, Liang J, Yang Y, et al. Novel insights into the role of Pseudomonas quinolone signal in the control of reverse osmosis membrane biofouling[J]. Journal of Membrane Science, 2018, 563: 505-512. |
20 | Si X R, Quan X C. Prevention of multi-species wastewater biofilm formation using vanillin and EPS disruptors through non-microbicidal mechanisms[J]. International Biodeterioration & Biodegradation, 2017, 116: 211-218. |
21 | Katebian L, Hoffmann M R, Jiang S C. Incorporation of quorum sensing inhibitors onto reverse osmosis membranes for biofouling prevention in seawater desalination[J]. Environmental Engineering Science, 2018, 35(4): 261-269. |
22 | Chen C, Yang Y, Choo K H, et al. Cracking the code of seasonal seawater biofouling: enhanced biofouling control with quorum sensing inhibitor-functionalized membranes[J]. NPJ Clean Water, 2024, 7: 12. |
23 | Liu Y Y, Yan W T, Wang Z, et al. 1-Methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability[J]. Journal of Membrane Science, 2020, 599: 117830. |
24 | Liu Y Y, Du J, Wu H W, et al. Antifouling streptomycin-based nanofiltration membrane with high permselectivity for dye/salt separation[J]. Separation and Purification Technology, 2022, 297: 121443. |
25 | Guo S J, Du J, Yan F Z, et al. Fabrication of anti-fouling polyamide nanofiltration membrane by incorporating streptomycin as a novel co-monomer[J]. Chinese Journal of Chemical Engineering, 2022, 50: 185-196. |
26 | Liu Y Y, Wu H W, Wang Z, et al. Regulating solvent activation by the mechanical force for the fabrication of reverse osmosis membranes with high permeability and selectivity[J]. Journal of Membrane Science, 2021, 638: 119732. |
27 | Liu Y Y, Wu H W, Guo S J, et al. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes?[J]. Journal of Membrane Science, 2023, 665: 121123. |
28 | Khan A A P, Khan A, Alam M A, et al. Chemical sensing platform for the Zn+2 ions based on poly(o-anisidine-co-methyl anthranilate) copolymer composites and their environmental remediation in real samples[J]. Environmental Science and Pollution Research, 2018, 25(28): 27899-27911. |
29 | Zhang S, Fu F J, Chung T S. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power[J]. Chemical Engineering Science, 2013, 87: 40-50. |
30 | Zhang Y, Li X, Wang Z, et al. A novel method of fabricating anti-biofouling nanofiltration membrane with almost no potential to induce antimicrobial resistance in bacteria[J]. Separation and Purification Technology, 2022, 288: 120710. |
31 | Shi M Q, Yan W T, Dong C X, et al. Solvent activation before heat-treatment for improving reverse osmosis membrane performance[J]. Journal of Membrane Science, 2020, 595: 117565. |
32 | Guo S W, Chen X R, Wan Y H, et al. Custom-tailoring loose nanofiltration membrane for precise biomolecule fractionation: new insight into post-treatment mechanisms[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13327-13337. |
33 | Sukitpaneenit P, Chung T S. Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration[J]. Journal of Membrane Science, 2014, 450: 124-137. |
34 | Wang X C, Zhang Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite[J]. Powder Technology, 2020, 371: 55-63. |
35 | Yan W T, Shi M Q, Wang Z, et al. Confined growth of skin layer for high performance reverse osmosis membrane[J]. Journal of Membrane Science, 2019, 585: 208-217. |
36 | Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003, 19(11): 4791-4797. |
37 | Wang C, Wang Z, Yang F R, et al. Improving the permselectivity and antifouling performance of reverse osmosis membrane based on a semi-interpenetrating polymer network[J]. Desalination, 2021, 502: 114910. |
38 | Chu K H, Mang J S, Lim J, et al. Variation of free volume and thickness by high pressure applied on thin film composite reverse osmosis membrane[J]. Desalination, 2021, 520: 115365. |
39 | Liu J, Sun X H, Ma Y T, et al. Quorum quenching mediated bacteria interruption as a probable strategy for drinking water treatment against bacterial pollution[J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 9539. |
40 | Park C, Kim J O. Performance of biofouling mitigating feed spacer by surface modification using quorum sensing inhibitor[J]. Desalination, 2022, 538: 115904. |
[1] | Wenfang GAO, Han CUI, Yiran SUN, Jiaqing PENG, Rui ZHU, Ran XIA, Xinyu ZHANG, Jiaqi LI, Xueliang WANG, Zhi SUN, Longyi LYU. A critical review on environmental impact assessment of typical metal production processes [J]. CIESC Journal, 2024, 75(9): 3056-3073. |
[2] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[3] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[4] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[5] | Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors [J]. CIESC Journal, 2024, 75(6): 2262-2273. |
[6] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[7] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[8] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[9] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[10] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[11] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[12] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[13] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
[14] | Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack [J]. CIESC Journal, 2024, 75(2): 637-646. |
[15] | Ruijiao YU, Hang GUO, Fang YE, Hao CHEN. Effect of gas diffusion layer porosity on fuel cell performance [J]. CIESC Journal, 2024, 75(10): 3752-3762. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||