CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3793-3803.DOI: 10.11949/0438-1157.20240423
• Energy and environmental engineering • Previous Articles Next Articles
Wenning LI1(), Min LU1, Yu YIN2(
)
Received:
2024-04-16
Revised:
2024-07-24
Online:
2024-11-04
Published:
2024-10-25
Contact:
Yu YIN
通讯作者:
殷俞
作者简介:
李文宁(1999—),女,硕士研究生,lwn15703878253@163.com
基金资助:
CLC Number:
Wenning LI, Min LU, Yu YIN. High dispersion of cobalt on the reduced graphene oxide for advanced oxidation degradation of organic pollutants[J]. CIESC Journal, 2024, 75(10): 3793-3803.
李文宁, 陆敏, 殷俞. 钴高度分散于还原氧化石墨烯用于高级氧化降解有机污染物[J]. 化工学报, 2024, 75(10): 3793-3803.
Fig.1 TEM images of 1.5QSCo-rGO, and 1.5AGCo-rGO; HRTEM and HAADF-STEM images and element mapping of corresponding O, C and Co elements of 1.5QSCo-rGO
催化剂 | 反应条件 | 降解率 | 速率常数k/min-1 | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 苯酚浓度/(mg/L) | 催化剂浓度/(g/L) | 氧化剂(PMS) 浓度/(mmol/L) | ||||
1.5QSCo-rGO | 25 | 20 | 0.2 | 6.5 | 100%(30 min) | 0.131 | 本文 |
Co/CoO@NC-1% | 25 | 20 | 0.1 | 1.63 | 100%(20 min) | 0.324 | [ |
CoNP@NC/Co-SA | 25 | 20 | 0.08 | 0.49 | 91.6%(3 min) | 0.696 | [ |
Co@NG-900 | 25 | 9.41 | 0.05 | 3 | 100%(12 min) | 0.397 | [ |
Se@NC-900 | 25 | 10 | 0.1 | 0.25 | 99.1%(30 min) | 0.169 | [ |
CFGA | 25 | 20 | 0.2 | 3.25 | 100%(60 min) | 0.046 | [ |
MnOOH-rGO | 30 | 23.5 | 0.5 | 0.625 | 100%(30 min) | not provided | [ |
CNS6 | 25 | 10 | 0.05 | 3 | 100%(60 min) | 0.089 | [ |
CoOOH/GO | 25 | 10 | 0.2 | 0.15 | 41%(5 min) | not provided | [ |
Co-30/KCC-1 | 25 | 20 | 0.2 | 7.8 | 100%(9 min) | not provided | [ |
Co2MnO4 | 25 | 50 | 0.2 | 6.5 | 100%(30 min) | 0.076 | [ |
10%Co3O4/CeO2 | 20 | 20 | 0.2 | 6.5 | 100%(50 min) | 0.0865 | [ |
CoMgAl-LDH | 30 | 9.41 | 0.3 | 3 | 100%(60 min) | 0.051 | [ |
2.5%MnO x /GO | 25 | 75 | 0.4 | 6.5 | 28%(30 min) | not provided | [ |
Table 1 Comparison of catalytic properties of reported catalytic materials for phenol degradation
催化剂 | 反应条件 | 降解率 | 速率常数k/min-1 | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 苯酚浓度/(mg/L) | 催化剂浓度/(g/L) | 氧化剂(PMS) 浓度/(mmol/L) | ||||
1.5QSCo-rGO | 25 | 20 | 0.2 | 6.5 | 100%(30 min) | 0.131 | 本文 |
Co/CoO@NC-1% | 25 | 20 | 0.1 | 1.63 | 100%(20 min) | 0.324 | [ |
CoNP@NC/Co-SA | 25 | 20 | 0.08 | 0.49 | 91.6%(3 min) | 0.696 | [ |
Co@NG-900 | 25 | 9.41 | 0.05 | 3 | 100%(12 min) | 0.397 | [ |
Se@NC-900 | 25 | 10 | 0.1 | 0.25 | 99.1%(30 min) | 0.169 | [ |
CFGA | 25 | 20 | 0.2 | 3.25 | 100%(60 min) | 0.046 | [ |
MnOOH-rGO | 30 | 23.5 | 0.5 | 0.625 | 100%(30 min) | not provided | [ |
CNS6 | 25 | 10 | 0.05 | 3 | 100%(60 min) | 0.089 | [ |
CoOOH/GO | 25 | 10 | 0.2 | 0.15 | 41%(5 min) | not provided | [ |
Co-30/KCC-1 | 25 | 20 | 0.2 | 7.8 | 100%(9 min) | not provided | [ |
Co2MnO4 | 25 | 50 | 0.2 | 6.5 | 100%(30 min) | 0.076 | [ |
10%Co3O4/CeO2 | 20 | 20 | 0.2 | 6.5 | 100%(50 min) | 0.0865 | [ |
CoMgAl-LDH | 30 | 9.41 | 0.3 | 3 | 100%(60 min) | 0.051 | [ |
2.5%MnO x /GO | 25 | 75 | 0.4 | 6.5 | 28%(30 min) | not provided | [ |
1 | Li X T, Wang J, Duan X G, et al. Fine-tuning radical/nonradical pathways on graphene by porous engineering and doping strategies[J]. ACS Catalysis, 2021, 11(8): 4848-4861. |
2 | Fan L S, Fujie K, Long T R, et al. Characteristics of draft tube gas-liquid-solid fluidized-bed bioreactor with immobilized living cells for phenol degradation[J]. Biotechnology and Bioengineering, 1987, 30(4): 498-504. |
3 | Farhan Hanafi M, Sapawe N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes[J]. Materials Today: Proceedings, 2020, 31: A141-A150. |
4 | Zhao T T, Gao Y H, Yu T T, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: biochemical characterization and comparative genome analysis[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111709. |
5 | You Y Y, He Z. Phenol degradation in iron-based advanced oxidation processes through ferric reduction assisted by molybdenum disulfide[J]. Chemosphere, 2023, 312: 137278. |
6 | Wang Y S, Qiu W, Lu X H, et al. Nitrilotriacetic acid-assisted Mn(Ⅱ) activated periodate for rapid and long-lasting degradation of carbamazepine: the importance of Mn(Ⅳ)-oxo species[J]. Water Research, 2023, 241: 120156. |
7 | Li Y Y, Zhang S G, Qin Y N, et al. Preparation of cobalt/hydrochar using the intrinsic features of rice hulls for dynamic carbamazepine degradation via efficient PMS activation[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108659. |
8 | Li Z L, Zhang L, Wang L, et al. Engineering the electronic structure of two-dimensional MoS2 by Ni dopants for pollutant degradation[J]. Separation and Purification Technology, 2023, 314: 123637. |
9 | Zhang Q H, He D, Li X R, et al. Mechanism and performance of singlet oxygen dominated peroxymonosulfate activation on CoOOH nanoparticles for 2,4-dichlorophenol degradation in water[J]. Journal of Hazardous Materials, 2020, 384: 121350. |
10 | Wu Z L, Wang Y P, Xiong Z K, et al. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine[J]. Applied Catalysis B: Environmental, 2020, 277: 119136. |
11 | Yao Y J, Tao Z M, Hu H W, et al. In situ growth of iron incorporated Ni3S2 nanosheet on nickel foam in mediating electron transfer to peroxymonosulfate for pollutant abatement[J]. Journal of Environmental Sciences, 2025, 150: 704-718. |
12 | Yi Q Y, Tan J L, Liu W Y, et al. Peroxymonosulfate activation by three-dimensional cobalt hydroxide/graphene oxide hydrogel for wastewater treatment through an automated process[J]. Chemical Engineering Journal, 2020, 400: 125965. |
13 | Chen H Y, Lu J, Fedeyko J M, et al. Zeolite supported Pd catalysts for the complete oxidation of methane: a critical review[J]. Applied Catalysis A: General, 2022, 633: 118534. |
14 | Shen P F, Yin P, Zou Y T, et al. Ultra-fast piezocatalysts enabled by interfacial interaction of reduced graphene oxide/MoS2 heterostructures[J]. Advanced Materials, 2023, 35(18): e2212172. |
15 | 王永胜, 兰小林, 邱天, 等. 铜基石墨烯复合催化剂的合成与表征[J]. 化工学报, 2020, 71(6): 2889-2899. |
Wang Y S, Lan X L, Qiu T, et al. Synthesis and characterization of copper-based graphene composite catalyst[J]. CIESC Journal, 2020, 71(6): 2889-2899. | |
16 | Shahzad A, Jawad A, Ifthikar J, et al. The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation[J]. Carbon, 2019, 155: 740-755. |
17 | Shen C C, Wang Y, Fu J. Urchin-like Co3O4 anchored on reduced graphene oxide with enhanced performance for peroxymonosulfate activation in ibuprofen degradation[J]. Journal of Environmental Management, 2022, 307: 114572. |
18 | Zou L J, Xiao X, Chu C H, et al. Facile synthesis of porous CoFe2O4/graphene aerogel for catalyzing efficient removal of organic pollutants[J]. Science of the Total Environment, 2021, 775: 143398. |
19 | Liu X Y, Yu H R, Ji J H, et al. Graphene oxide-supported three-dimensional cobalt-nickel bimetallic sponge-mediated peroxymonosulfate activation for phenol degradation[J]. ACS ES&T Engineering, 2021, 1(12): 1705-1714. |
20 | Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
21 | Chen Z L, Yang L X, Liu X T, et al. Enhanced oxygen activation over self-supporting Cu2+ doped Co3O4 nanoneedle arrays for efficient HCHO oxidation at room temperature[J]. Separation and Purification Technology, 2024, 338: 126542. |
22 | Singh M, T P R, Golda A S, et al. Selective vanadium etching and in-situ formation of δ-Bi2O3 on m-BiVO4 with g-C3N4 nanosheets for photocatalytic degradation of antibiotic tetracycline[J]. Journal of Cleaner Production, 2024, 442: 140921. |
23 | Rad T S, Khataee A, Rahim Pouran S. Synergistic enhancement in photocatalytic performance of Ce(Ⅳ) and Cr(Ⅲ) co-substituted magnetite nanoparticles loaded on reduced graphene oxide sheets[J]. Journal of Colloid and Interface Science, 2018, 528: 248-262. |
24 | Zhang W, Li M, Luo J W, et al. Modulating the coordination environment of Co single-atom catalysts through sulphur doping to efficiently enhance peroxymonosulfate activation for degradation of carbamazepine[J]. Chemical Engineering Journal, 2023, 474: 145377. |
25 | Zou L J, Zhu X Y, Lu L, et al. Bimetal organic framework/graphene oxide derived magnetic porous composite catalyst for peroxymonosulfate activation in fast organic pollutant degradation[J]. Journal of Hazardous Materials, 2021, 419: 126427. |
26 | Zou H Y, Wang H T, Sun H Q, et al. Single-atom cobalt catalysts encapsulating cobalt nanoparticles with built-in electric field for ultrafast and lasting peroxymonosulfate activation[J]. ACS ES&T Water, 2024, 4(6): 2433-2444. |
27 | Yu X Y, Wang L J, Wang X, et al. Enhanced nonradical catalytic oxidation by encapsulating cobalt into nitrogen doped graphene: highlight on interfacial interactions[J]. Journal of Materials Chemistry A, 2021, 9(11): 7198-7207. |
28 | Chai Y D, Dai H L, Zhan P, et al. Selective degradation of organic micropollutants by activation of peroxymonosulfate by Se@NC: role of Se doping and nonradical pathway mechanism[J]. Journal of Hazardous Materials, 2023, 452: 131202. |
29 | Zhao H X, Cao Y, Liu Y Q, et al. Efficient degradation of phenol by MnOOH-rGO composite with high peroxymonosulfate utilization efficiency[J]. Chemosphere, 2023, 336: 139200. |
30 | Ren S Y, Xu X, Zhu Z S, et al. Catalytic transformation of microplastics to functional carbon for catalytic peroxymonosulfate activation: conversion mechanism and defect of scavenging[J]. Applied Catalysis B: Environmental, 2024, 342: 123410. |
31 | Afzal S, Pan K, Duan D D, et al. Heterogeneous activation of peroxymonosulfate with cobalt incorporated fibrous silica nanospheres for the degradation of organic pollutants in water[J]. Applied Surface Science, 2021, 542: 148674. |
32 | Yue L J, Hao L Y, Zhang J K, et al. Oxygen-enriched vacancy Co2MnO4 spinel catalyst activated peroxymonosulfate for degradation of phenol: non-radical dominated reaction pathway[J]. Journal of Water Process Engineering, 2023, 53: 103807. |
33 | Gao Q, Cui Y C, Wang S J, et al. Efficient activation of peroxymonosulfate by Co-doped mesoporous CeO2 nanorods as a heterogeneous catalyst for phenol oxidation[J]. Environmental Science and Pollution Research, 2021, 28(22): 27852-27863. |
34 | Liao Z W, Zhu J Y, Jawad A, et al. Degradation of phenol using peroxymonosulfate activated by a high efficiency and stable CoMgAl-LDH catalyst[J]. Materials, 2019, 12(6): 968. |
35 | Saputra E, Pinem J A, Budihardjo M A, et al. Carbon-supported manganese for heterogeneous activation of peroxymonosulfate for the decomposition of phenol in aqueous solutions[J]. Materials Today Chemistry, 2020, 16: 100268. |
36 | Yao Y J, Cai Y M, Lu F, et al. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants[J]. Journal of Hazardous Materials, 2014, 270: 61-70. |
37 | Qian J, Mi X H, Chen Z J, et al. Efficient emerging contaminants (EM) decomposition via peroxymonosulfate (PMS) activation by Co3O4/carbonized polyaniline (CPANI) composite: characterization of tetracycline (TC) degradation property and application for the remediation of EM-polluted water body[J]. Journal of Cleaner Production, 2023, 405: 137023. |
38 | Zhang J, Ma Y L, Sun Y G, et al. Reduced porous 2D Co3O4 enhanced peroxymonosulfate activation to form multi-reactive oxygen species: the key role of oxygen vacancies[J]. Separation and Purification Technology, 2024, 330: 125409. |
39 | 岳敏, 王璟, 韩玉泽, 等. 盐助溶液燃烧法制备MnFe2O4催化过一硫酸盐降解双酚A[J]. 化工学报, 2020, 71(12): 5589-5598. |
Yue M, Wang J, Han Y Z, et al. Degradation of bisphenol A by peroxymonosulfate activated by MnFe2O4 prepared by salt-assisted solution combustion synthesis[J]. CIESC Journal, 2020, 71(12): 5589-5598. | |
40 | Yang L, Jiao Y, Xu X M, et al. Superstructures with atomic-level arranged perovskite and oxide layers for advanced oxidation with an enhanced non-free radical pathway[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1899-1909. |
41 | 闫新龙, 黄志刚, 胡清勋, 等. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
Yan X L, Huang Z G, Hu Q X, et al. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon[J]. CIESC Journal, 2023, 74(3): 1102-1112. |
[1] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
[2] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[3] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[4] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
[5] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[6] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[7] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[8] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[9] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[10] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[11] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[12] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[13] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[14] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[15] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||