CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 3084-3092.DOI: 10.11949/0438-1157.20241056
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Chenghui YAN1,2(
), Yingming XIE1,2(
), Zhihai PANG1,2, Shengqiao WENG1,2
Received:2024-09-20
Revised:2024-12-16
Online:2025-07-09
Published:2025-06-25
Contact:
Yingming XIE
颜成辉1,2(
), 谢应明1,2(
), 庞治海1,2, 翁盛乔1,2
通讯作者:
谢应明
作者简介:颜成辉(1999—),男,硕士研究生,1214509861@qq.com
基金资助:CLC Number:
Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials[J]. CIESC Journal, 2025, 76(6): 3084-3092.
颜成辉, 谢应明, 庞治海, 翁盛乔. 泡沫多孔材料对R134a水合物蓄冷的强化研究[J]. 化工学报, 2025, 76(6): 3084-3092.
Add to citation manager EndNote|Ris|BibTeX
| 添加材料 | 孔密度/PPI | 反应中水蓄冷量/kJ | 釜体蓄冷量/kJ | 水合物蓄冷量/kJ | 总蓄冷量/kJ |
|---|---|---|---|---|---|
| 无 | — | 252.22 | 336.16 | 246.70 | 836.13 |
| 泡沫陶瓷 | 10 | 250.97 | 332.99 | 284.67 | 868.73 |
| 20 | 250.22 | 333.66 | 279.11 | 860.11 | |
| 30 | 251.72 | 334.99 | 269.68 | 857.12 | |
| 泡沫铝 | 10 | 250.84 | 334.66 | 278.61 | 865.34 |
| 20 | 251.60 | 338.16 | 267.94 | 860.47 | |
| 30 | 250.47 | 335.49 | 263.0 | 851.33 | |
| 泡沫铜 | 10 | 249.59 | 332.99 | 307.45 | 891.23 |
| 20 | 250.34 | 334.99 | 291.18 | 878.33 | |
| 30 | 249.84 | 334.49 | 273.46 | 859.75 |
Table 1 Characteristics of cold storage system under different working conditions
| 添加材料 | 孔密度/PPI | 反应中水蓄冷量/kJ | 釜体蓄冷量/kJ | 水合物蓄冷量/kJ | 总蓄冷量/kJ |
|---|---|---|---|---|---|
| 无 | — | 252.22 | 336.16 | 246.70 | 836.13 |
| 泡沫陶瓷 | 10 | 250.97 | 332.99 | 284.67 | 868.73 |
| 20 | 250.22 | 333.66 | 279.11 | 860.11 | |
| 30 | 251.72 | 334.99 | 269.68 | 857.12 | |
| 泡沫铝 | 10 | 250.84 | 334.66 | 278.61 | 865.34 |
| 20 | 251.60 | 338.16 | 267.94 | 860.47 | |
| 30 | 250.47 | 335.49 | 263.0 | 851.33 | |
| 泡沫铜 | 10 | 249.59 | 332.99 | 307.45 | 891.23 |
| 20 | 250.34 | 334.99 | 291.18 | 878.33 | |
| 30 | 249.84 | 334.49 | 273.46 | 859.75 |
| 材料 | 厚度/mm | 蓄冷时间/min | 预冷时间/min | 平均蓄冷速率/kW | 总蓄冷量/kJ |
|---|---|---|---|---|---|
| 泡沫陶瓷 | 20 | 50.34 | 43.15 | 0.295 | 891.23 |
| 30 | 47.63 | 40.17 | 0.324 | 926.34 | |
| 40 | 48.08 | 40.83 | 0.317 | 913.87 | |
| 泡沫铝 | 20 | 49.83 | 42.83 | 0.295 | 881.26 |
| 30 | 46.83 | 39.83 | 0.321 | 901.03 | |
| 40 | 47.96 | 40.42 | 0.312 | 891.23 | |
| 泡沫铜 | 20 | 46.36 | 37.96 | 0.337 | 914.71 |
| 30 | 42.61 | 35.80 | 0.364 | 937.71 | |
| 40 | 48.36 | 36.73 | 0.321 | 931.16 |
Table 2 Cool storage characteristics of foam porous material systems with different thicknesses
| 材料 | 厚度/mm | 蓄冷时间/min | 预冷时间/min | 平均蓄冷速率/kW | 总蓄冷量/kJ |
|---|---|---|---|---|---|
| 泡沫陶瓷 | 20 | 50.34 | 43.15 | 0.295 | 891.23 |
| 30 | 47.63 | 40.17 | 0.324 | 926.34 | |
| 40 | 48.08 | 40.83 | 0.317 | 913.87 | |
| 泡沫铝 | 20 | 49.83 | 42.83 | 0.295 | 881.26 |
| 30 | 46.83 | 39.83 | 0.321 | 901.03 | |
| 40 | 47.96 | 40.42 | 0.312 | 891.23 | |
| 泡沫铜 | 20 | 46.36 | 37.96 | 0.337 | 914.71 |
| 30 | 42.61 | 35.80 | 0.364 | 937.71 | |
| 40 | 48.36 | 36.73 | 0.321 | 931.16 |
| [1] | 秦威南, 何强, 祝强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2021, 49(5): 1-6. |
| Qin W N, He Q, Zhu Q, et al. Research progress on phase change cold storage material[J]. New Chemical Materials, 2021, 49(5): 1-6. | |
| [2] | 汪向磊, 王文梅, 曹和平, 等. 蓄冷技术现状及研究进展[J]. 山西化工, 2016, 36(1): 34-40. |
| Wang X L, Wang W M, Cao H P, et al. Current status and recent advance of cold storage technology[J]. Shanxi Chemical Industry, 2016, 36(1): 34-40. | |
| [3] | 史杰, 郭恒超, 常晟, 等. 浦东机场能源中心水蓄冷系统设计与性能分析[J]. 流体机械, 2020, 48(9): 71-76. |
| Shi J, Guo H C, Chang C, et al. Design and performance analysis of the water cold storage system in the energy center of Pudong international airport[J]. Fluid Machinery, 2020, 48(9): 71-76. | |
| [4] | 吴少光, 廖晓华, 蔡戈锋. 串并联结合水蓄冷系统应用研究[J]. 暖通空调, 2021, 51(6): 88-92, 39. |
| Wu S G, Liao X H, Cai G F. Application of series and parallel combined water cool storage system[J]. Heating Ventilating & Air Conditioning, 2021, 51(6): 88-92, 39. | |
| [5] | 滕跃, 刘钊, 王文科, 等. 冰蓄冷空调技术在电网调峰中的应用[J]. 科技创新与应用, 2023, 13(12): 166-169. |
| Teng Y, Liu Z, Wang W K, et al. Application of ice storage air conditioning technology in peak regulation of power grid[J]. Technology Innovation and Application, 2023, 13(12): 166-169. | |
| [6] | Lin W M, Tu C S, Tsai M T, et al. Optimal energy reduction schedules for ice storage air-conditioning systems[J]. Energies, 2015, 8(9): 10504-10521. |
| [7] | 丁军丹. 低温共晶盐蓄冷研究[D]. 南京: 南京理工大学, 2017. |
| Ding J D. Study on cold storage of eutectic salt at low temperature[D]. Nanjing: Nanjing University of Science and Technology, 2017. | |
| [8] | 薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2021, 40(2): 722-735. |
| Xue Q, Wang X L, Li Z Z, et al. Research progresses in hydrate based technologies and processes[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. | |
| [9] | 杨群芳. 制冷剂水合物蓄冷技术研究现状及应用前景[J]. 科技信息, 2012(17): 39-40. |
| Yang Q F. Research status and advance of refrigerants hydrate cooling storage technology[J]. Science & Technology Information, 2012(17): 39-40. | |
| [10] | 李廷勋, 鲁健, 何东财, 等. 新型替代制冷剂房间空调器系统特性实验研究[J]. 制冷学报, 2015, 36(3): 56-60. |
| Li T X, Lu J, He D C, et al. An experiment study on performance of new alternatives in room air-conditioner[J]. Journal of Refrigeration, 2015, 36(3): 56-60. | |
| [11] | 王英梅, 牛爱丽, 张兆慧, 等. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
| Wang Y M, Niu A L, Zhang Z H, et al. Research progress on rapid generation methods of carbon dioxide hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125. | |
| [12] | 丁宇, 荣少杰, 刘青松. 四丁基溴化铵-二氧化碳体系中不同结构水合物生成条件测量与模型预测研究[J]. 当代化工研究, 2022(19): 27-29. |
| Ding Y, Rong S J, Liu Q S. Experimental and modeling study on phase equilibria of the different semiclathrate hydrates fomred by tetra-n-butyl ammonium bromide + carbon dioxide[J]. Modern Chemical Research, 2022(19): 27-29. | |
| [13] | 程传晓, 李伦, 胡深, 等. 鼓泡法强化甲烷水合物成核及生长研究[J]. 低温与超导, 2021, 49(2): 55-60, 104. |
| Cheng C X, Li L, Hu S, et al. Study on the enhancement of nucleation and growth of methane hydrate by bubbling[J]. Cryogenics & Superconductivity, 2021, 49(2): 55-60, 104. | |
| [14] | Rahul S, Chandan S, Rajnish K, et al. Impact of acetamide, 1, 2, 4-triazole, and 1-dodecyl-2-pyrrolidinone on carbon dioxide hydrate growth: application in carbon dioxide capture and sequestration[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110103. |
| [15] | Stoporev A S, Semenov A P, Medvedev V I, et al. Nucleation of gas hydrates in multiphase systems with several types of interfaces[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(1): 783-795. |
| [16] | Li H J, Wang L G. Hydrophobized particles can accelerate nucleation of clathrate hydrates[J]. Fuel, 2015, 140: 440-445. |
| [17] | Childers M C, Daggett V. Insights from molecular dynamics simulations for computational protein design[J]. Molecular Systems Design & Engineering, 2017, 2(1): 9-33. |
| [18] | Yang L, Fan S S, Wang Y H, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
| [19] | Liu X W, Tian L Q, Chen D Y, et al. Accelerated formation of methane hydrates in the porous SiC foam ceramic packed reactor[J]. Fuel, 2019, 257: 115858. |
| [20] | Li R L, Liu D P, Yang L, et al. Rapid methane hydrate formation in aluminum honeycomb[J]. Fuel, 2019, 252: 574-580. |
| [21] | Lu Y Y, Ge B B, Zhong D L. Investigation of using graphite nanofluids to promote methane hydrate formation: application to solidified natural gas storage[J]. Energy, 2020, 199: 117424. |
| [22] | Xu G, Xu C G, Wang M, et al. Influence of nickel foam on kinetics and separation efficiency of hydrate-based carbon dioxide separation[J]. Energy, 2021, 231: 120826. |
| [23] | Ekambara K, Dhotre M T, Joshi J B. CFD simulations of bubble column reactors: 1D, 2D and 3D approach[J]. Chemical Engineering Science, 2005, 60(23): 6733-6746. |
| [24] | Bhole M R, Joshi J B, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science, 2008, 63(8): 2267-2282. |
| [25] | 雷建勇. 通气结构对鼓泡容器内气液两相分布的影响[D]. 西安: 西北大学, 2014. |
| Lei J Y. Effect of aeration structure on gas-liquid two-phase distribution in bubbling container[D]. Xi'an: Northwest University, 2014. | |
| [26] | 于萍. 工程流体力学[M]. 2版. 北京: 科学出版社, 2015. |
| Yu P. Engineering Fluid Mechanics[M]. 2nd ed. Beijing: Science Press, 2015. | |
| [27] | 张师帅. CFD技术原理与应用[M]. 武汉: 华中科技大学出版社, 2016. |
| Zhang S S. Principle and Application of CFD Technology[M]. Wuhan: Huazhong University of Science and Technology Press, 2016. | |
| [28] | Laborde-Boutet C, Larachi F, Dromard N, et al. CFD simulation of bubble column flows: investigations on turbulence models in RANS approach[J]. Chemical Engineering Science, 2009, 64(21): 4399-4413. |
| [29] | Zhang D, Deen N G, Kuipers J A M. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces[J]. Chemical Engineering Science, 2006, 61(23): 7593-7608. |
| [30] | Sommerfeld M, Decker S. State of the art and future trends in CFD simulation of stirred vessel hydrodynamics[J]. Chemical Engineering & Technology, 2004, 27(3): 215-224. |
| [31] | Chung K H K, Simmons M J H, Barigou M. Angle-resolved particle image velocimetry measurements of flow and turbulence fields in small-scale stirred vessels of different mixer configurations[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 1008-1018. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [3] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [4] | Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor [J]. CIESC Journal, 2025, 76(6): 2958-2973. |
| [5] | Dongliang XU, Binbin ZHAO, Yimei SUN, Tingting LIU, Xiaoran LIU, Minggong CHEN. Simulation and optimal design of RPB based on modified porous medium model [J]. CIESC Journal, 2025, 76(4): 1569-1582. |
| [6] | Xiaoyu DAI, Qiang XU, Chenyu YANG, Xiaobin SU, Liejin GUO. Gas-liquid two-phase pressurization characteristics of multistage mixed-flow multiphase pump [J]. CIESC Journal, 2025, 76(2): 554-563. |
| [7] | Heng ZHANG, Dianlu KUI, Hong CHANG, Zhigang ZHAN. Effect of mechanical stress on the interfacial transport properties of gas diffusion layers [J]. CIESC Journal, 2025, 76(2): 637-644. |
| [8] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
| [9] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
| [10] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
| [11] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
| [12] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
| [13] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
| [14] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
| [15] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||