CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 161-172.DOI: 10.11949/0438-1157.20240809
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2024-07-17
Revised:
2024-10-21
Online:
2025-02-08
Published:
2025-01-25
Contact:
Li CHEN
通讯作者:
陈黎
作者简介:
张闯德(1994—),男,博士研究生,chuangdezhang@stu.xjtu.edu.cn
基金资助:
CLC Number:
Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media[J]. CIESC Journal, 2025, 76(1): 161-172.
张闯德, 陈黎. 优势通道对多孔介质中多相反应输运过程影响的孔隙尺度研究[J]. 化工学报, 2025, 76(1): 161-172.
参数 | 符号 | 物理单位值 | 格子单位值 |
---|---|---|---|
颗粒直径 | D | 500 μm | 50 |
流体A密度 | ρA | 1000 kg·m-3 | 2.0 |
盐水的运动黏度 | μA | 1.0×10-6 m2·s-1 | 0.167 |
反应物在盐水中的扩散系数 | DR | 7.2×10-7 m2·s-1 | 0.12 |
生成物在盐水中的扩散系数 | DP | 7.2×10-7 m2·s-1 | 0.12 |
摩尔体积 | Vm | 3.8×10-5 m3·mol-1 | 3.8×10-2 |
平衡常数 | Keq | 1×1010 | 1×1010 |
流体A中的入口反应物浓度 | CR,in | 1.0 mol·L-1 | 1.0 |
流体A和B的入口产品浓度 | CP,in | 0 mol·L-1 | 0 |
Péclet数 | Pe | 5 | 5 |
Damköhler数 | Da | 10 | 10 |
Table 1 Physical property parameters used in the simulation
参数 | 符号 | 物理单位值 | 格子单位值 |
---|---|---|---|
颗粒直径 | D | 500 μm | 50 |
流体A密度 | ρA | 1000 kg·m-3 | 2.0 |
盐水的运动黏度 | μA | 1.0×10-6 m2·s-1 | 0.167 |
反应物在盐水中的扩散系数 | DR | 7.2×10-7 m2·s-1 | 0.12 |
生成物在盐水中的扩散系数 | DP | 7.2×10-7 m2·s-1 | 0.12 |
摩尔体积 | Vm | 3.8×10-5 m3·mol-1 | 3.8×10-2 |
平衡常数 | Keq | 1×1010 | 1×1010 |
流体A中的入口反应物浓度 | CR,in | 1.0 mol·L-1 | 1.0 |
流体A和B的入口产品浓度 | CP,in | 0 mol·L-1 | 0 |
Péclet数 | Pe | 5 | 5 |
Damköhler数 | Da | 10 | 10 |
1 | Snæbjörnsdóttir S Ó, Sigfússon B, Marieni C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1: 90-102. |
2 | Zhang R Y, Min T, Chen L, et al. Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells[J]. Applied Energy, 2019, 253: 113590. |
3 | Jew A D, Druhan J L, Ihme M, et al. Chemical and reactive transport processes associated with hydraulic fracturing of unconventional oil/gas shales[J]. Chemical Reviews, 2022, 122(9): 9198-9263. |
4 | 薛强, 梁冰, 冯夏庭, 等. 石油污染物在地下环境系统中运移的多相流数值模型[J]. 化工学报, 2005, 56(5): 920-924. |
Xue Q, Liang B, Feng X T, et al. Numerical modeling with multiphase flow model of petroleum pollutant transport in subsurface environment[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 920-924. | |
5 | Yu Y S, Zhang X W, Liu J W, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
6 | 张烈辉, 张涛, 赵玉龙, 等. 二氧化碳-水-岩作用机理及微观模拟方法研究进展[J]. 石油勘探与开发, 2024, 51(1): 199-211. |
Zhang L H, Zhang T, Zhao Y L, et al. A review of interaction mechanisms and microscopic simulation methods for CO2-water-rock system[J]. Petroleum Exploration and Development, 2024, 51(1): 199-211. | |
7 | Békri S, Thovert J, Adler P. Dissolution of porous media[J]. Chemical Engineering Science, 1995, 50: 2765-2791. |
8 | Fredd C N, Fogler H S. Influence of transport and reaction on wormhole formation in porous media[J]. AIChE Journal, 1998, 44(9): 1933-1949. |
9 | Maheshwari P, Ratnakar R R, Kalia N, et al. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J]. Chemical Engineering Science, 2013, 90: 258-274. |
10 | Wang Z, Chen L, Wei H K, et al. Pore-scale study of mineral dissolution in heterogeneous structures and deep learning prediction of permeability[J]. Physics of Fluids, 2022, 34(11): 116609. |
11 | Zhang Y T, Jiang F, Tsuji T. Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice Boltzmann method[J]. Chemical Engineering Science, 2022, 247: 117048. |
12 | Liu M, Mostaghimi P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science, 2017, 161: 360-369. |
13 | Chen L, Kang Q J, Viswanathan H S, et al. Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals[J]. Water Resources Research, 2014, 50(12): 9343-9365. |
14 | Deng H, Molins S, Trebotich D, et al. Pore-scale numerical investigation of the impacts of surface roughness: upscaling of reaction rates in rough fractures[J]. Geochimica et Cosmochimica Acta, 2018, 239: 374-389. |
15 | You J H, Lee K J. A pore–scale investigation of surface roughness on the evolution of natural fractures during acid dissolution using DBS method[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108728. |
16 | Zhou C X, Hu R, Li H W, et al. Pore-scale visualization and quantification of dissolution in microfluidic rough channels[J]. Water Resources Research, 2022, 58(11): e2022wr032255. |
17 | Chen L, He A, Zhao J L, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Progress in Energy and Combustion Science, 2022, 88: 100968. |
18 | 陈黎. 能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安: 西安交通大学, 2013. |
Chen L. Numerical investigation of multiscale multiple physicochemical coupled reactive transport processes in energy and environmental discipline[D]. Xi'an: Xi'an Jiaotong University, 2013. | |
19 | Shukla S, Zhu D, Hill A D. The effect of phase saturation conditions on wormhole propagation in carbonate acidizing[J]. SPE Journal, 2006, 11(3): 273-281. |
20 | Babaei M, Sedighi M. Impact of phase saturation on wormhole formation in rock matrix acidizing[J]. Chemical Engineering Science, 2018, 177: 39-52. |
21 | Ott H, Oedai S. Wormhole formation and compact dissolution in single-and two-phase CO2-brine injections[J]. Geophysical Research Letters, 2015, 42(7): 2270-2276. |
22 | Jiménez-Martínez J, de Anna P, Tabuteau H, et al. Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions[J]. Geophysical Research Letters, 2015, 42(13): 5316-5324. |
23 | Li P, Deng H, Molins S. The effect of pore-scale two-phase flow on mineral reaction rates[J]. Frontiers in Water, 2022, 3: 734518. |
24 | Kang Q J, Lichtner P C, Zhang D X. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05203. |
25 | Kang Q J, Lichtner P C, Zhang D X. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research, 2007, 43(12): W12S14. |
26 | Lu G P, DePaolo D J, Kang Q J, et al. Lattice Boltzmann simulation of snow crystal growth in clouds[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7): e2008jd011087. |
27 | Xu Q H, Long W, Jiang H, et al. Pore-scale modelling of the coupled thermal and reactive flow at the combustion front during crude oil in situ combustion[J]. Chemical Engineering Journal, 2018, 350: 776-790. |
28 | Wang M, Zhu W B. Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1222-1239. |
29 | Zhang L M, Zhang C D, Zhang K, et al. Pore-scale investigation of methane hydrate dissociation using the lattice Boltzmann method[J]. Water Resources Research, 2019, 55(11): 8422-8444. |
30 | Chen L, Kang Q J, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(4): 043306. |
31 | Chen L, Kang Q J, Tang Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. |
32 | Chen L, Wang M Y, Kang Q J, et al. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping[J]. Advances in Water Resources, 2018, 116: 208-218. |
33 | Yang J Y, Dai X Y, Xu Q H, et al. Lattice Boltzmann modeling of interfacial mass transfer in a multiphase system[J]. Physical Review E, 2021, 104(1/2): 015307. |
40 | Zhang R D. Spatial Variation Theory and Its Application[M]. Beijing: Science Press, 2005. |
41 | Menke H P, Bijeljic B, Andrew M G, et al. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J]. Environmental Science & Technology, 2015, 49(7): 4407-4414. |
34 | Yang J Y, Xu Q H, Liu Z Y, et al. Pore-scale study of the multiphase methane hydrate dissociation dynamics and mechanisms in the sediment[J]. Chemical Engineering Journal, 2022, 430: 132786. |
35 | Diao Z H, Chen Z X, Liu H H, et al. Pore-scale modeling of gravity-driven superheated vapor flooding process in porous media using the lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106937. |
36 | Zhang C D, Chen L, Min T, et al. Pore-scale modeling of effects of multiphase reactive transport on solid dissolution in porous media with structural heterogeneity[J]. Chemical Engineering Science, 2024, 295: 120127. |
37 | 付宇航, 赵述芳, 王文坦, 等. 多相/多组分LBM模型及其在微流体领域的应用[J]. 化工学报, 2014, 65(7): 2535-2543. |
Fu Y H, Zhao S F, Wang W T, et al. Application of lattice Boltzmann method for simulation of multiphase/multicomponent flow in microfluidics[J]. CIESC Journal, 2014, 65(7): 2535-2543. | |
38 | Anna S L, Bontoux N, Stone H A. Formation of dispersions using "flow focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366. |
39 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Science Press, 2009. | |
40 | 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005. |
[1] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[2] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
[3] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[4] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[5] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[6] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[7] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[8] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[9] | Weihua CAI, Yuhang WANG, Wenchao ZHANG, Shaodan LI, Xinlong LIU, Ben'an CAI, Jincheng WANG. Gas production characteristics of a porous media-Venturi bubble generator [J]. CIESC Journal, 2024, 75(10): 3488-3497. |
[10] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[11] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[12] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[13] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[14] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||