CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1583-1594.DOI: 10.11949/0438-1157.20241134
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Luochang WU(), Zeyu YANG, Jianguo YAN(
), Xutao ZHU, Yang CHEN, Zichen WANG
Received:
2024-10-14
Revised:
2024-12-26
Online:
2025-05-12
Published:
2025-04-25
Contact:
Jianguo YAN
吴罗长(), 杨泽宇, 颜建国(
), 朱旭涛, 陈阳, 王子辰
通讯作者:
颜建国
作者简介:
吴罗长(1978—),男,副教授,wlc@xaut.edu.cn
基金资助:
CLC Number:
Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels[J]. CIESC Journal, 2025, 76(4): 1583-1594.
吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594.
参数 | 单位 | 不确定度/% |
---|---|---|
压力 | MPa | 0.16 |
质量流速 | kg/(m2∙s) | 0.8 |
流体温度 | °C | 0.5 |
壁面温度 | °C | 0.4 |
热通量 | kW/m2 | 4.32 |
传热系数 | W/(m2∙°C) | 6.6 |
Table 1 Uncertainties of the experimental parameters
参数 | 单位 | 不确定度/% |
---|---|---|
压力 | MPa | 0.16 |
质量流速 | kg/(m2∙s) | 0.8 |
流体温度 | °C | 0.5 |
壁面温度 | °C | 0.4 |
热通量 | kW/m2 | 4.32 |
传热系数 | W/(m2∙°C) | 6.6 |
序号 | p/MPa | G/(kg/(m2·s)) | q/(kW/m2) |
---|---|---|---|
1 | 7.4 | 1000 | 100 |
2 | 7.4 | 1000 | 200 |
3 | 7.4 | 1000 | 300 |
4 | 7.4 | 500 | 100 |
5 | 7.4 | 1500 | 100 |
6 | 7.9 | 1000 | 100 |
7 | 8.4 | 1000 | 100 |
Table 2 Test conditions
序号 | p/MPa | G/(kg/(m2·s)) | q/(kW/m2) |
---|---|---|---|
1 | 7.4 | 1000 | 100 |
2 | 7.4 | 1000 | 200 |
3 | 7.4 | 1000 | 300 |
4 | 7.4 | 500 | 100 |
5 | 7.4 | 1500 | 100 |
6 | 7.9 | 1000 | 100 |
7 | 8.4 | 1000 | 100 |
文献 | 关联式 | 适用范围 |
---|---|---|
[ | p = 8.2732 MPa d = 4.572 mm Tb = 21 ~ 48.9℃ Reb = 3×104 ~ 3×105 | |
[ | p = 8.38~8.80 MPa d = 8 mm G = 700~3200 kg/(m2·s) q = 18.40~161.12 kW/m2 | |
[ | p = 7.46~10.26 MPa d = 4.5 mm,Tb= 29~115℃ G = 208 ~ 874 kg/(m2·s) q=38 ~ 234 kW/m2 | |
[ | p = 7.40~12.0 MPa d = 0.70~2.16 mm | |
[ | p = 7.40 ~ 8.44 MPa, d = 2 mm G = 600 ~ 1600 kg/(m2·s) q = 0 ~ 319 kW/m2 | |
[ | p = 7.58 ~ 9.58 MPa d = 0.948 ~ 8.000 mm G = 419 ~ 1200 kg/(m2·s) q = 20 ~ 130 kW/m2 |
Table 3 Heat transfer correlations for supercritical carbon dioxide
文献 | 关联式 | 适用范围 |
---|---|---|
[ | p = 8.2732 MPa d = 4.572 mm Tb = 21 ~ 48.9℃ Reb = 3×104 ~ 3×105 | |
[ | p = 8.38~8.80 MPa d = 8 mm G = 700~3200 kg/(m2·s) q = 18.40~161.12 kW/m2 | |
[ | p = 7.46~10.26 MPa d = 4.5 mm,Tb= 29~115℃ G = 208 ~ 874 kg/(m2·s) q=38 ~ 234 kW/m2 | |
[ | p = 7.40~12.0 MPa d = 0.70~2.16 mm | |
[ | p = 7.40 ~ 8.44 MPa, d = 2 mm G = 600 ~ 1600 kg/(m2·s) q = 0 ~ 319 kW/m2 | |
[ | p = 7.58 ~ 9.58 MPa d = 0.948 ~ 8.000 mm G = 419 ~ 1200 kg/(m2·s) q = 20 ~ 130 kW/m2 |
关联式 | 平均误差 | 平均绝对误差 | 均方根误差 |
---|---|---|---|
Bringer-Smith[ | 0.088 | 0.051 | 0.224 |
Pioro[ | -0.275 | 0.126 | 0.355 |
Kim-Kim[ | -0.065 | 0.038 | 0.195 |
Liao[ | -0.208 | 0.066 | 0.257 |
Lyu[ | 0.295 | 0.545 | 0.738 |
Preda[ | 0.622 | 0.831 | 0.911 |
新关联式 | -0.017 | 0.010 | 0.101 |
Table 4 Prediction performances of heat transfer correlations
关联式 | 平均误差 | 平均绝对误差 | 均方根误差 |
---|---|---|---|
Bringer-Smith[ | 0.088 | 0.051 | 0.224 |
Pioro[ | -0.275 | 0.126 | 0.355 |
Kim-Kim[ | -0.065 | 0.038 | 0.195 |
Liao[ | -0.208 | 0.066 | 0.257 |
Lyu[ | 0.295 | 0.545 | 0.738 |
Preda[ | 0.622 | 0.831 | 0.911 |
新关联式 | -0.017 | 0.010 | 0.101 |
1 | Ma T, Li L, Xu X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. |
2 | Ma T, Xin F, Li L, et al. Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 89: 1087-1095. |
3 | Shi H Y, Li M J, Wang W Q, et al. Heat transfer and friction of molten salt and supercritical CO₂ flowing in an airfoil channel of a printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119006. |
4 | Shin J H, Yoon S H. Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen[J]. Applied Thermal Engineering, 2020, 168: 114802. |
5 | 孙玉伟, 林杰, 刘小华, 等. 超临界CO2印刷电路板式换热器动态特性研究[J]. 热科学与技术, 2024, 23(4): 379-387. |
Sun Y W, Lin J, Liu X H, et al. Study on dynamic characteristics of supercritical CO2 printed circuit heat exchanger[J]. Journal of Thermal Science and Technology, 2024, 23(4): 379-387. | |
6 | 李占英, 王江峰, 娄聚伟, 等. 印刷电路板换热器在超临界二氧化碳布雷顿循环系统中的动态特性研究[J]. 西安交通大学学报, 2024, 58(12): 34-44. |
Li Z Y, Wang J F, Lou J W, et al. Dynamic characteristic analysis of printed circuit heat exchangers in supercritical carbon dioxide Brayton cycle systems[J]. Journal of Xi'an Jiaotong University, 2024, 58(12): 34-44. | |
7 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流换热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
8 | Jiang P X, Zhang Y, Zhao C R, et al. Convection heat transfer of CO₂ at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. |
9 | Peng R F, Lei X L, Guo Z M, et al. Forced convective heat transfer of supercritical carbon dioxide in mini-channel under low mass fluxes[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121919. |
10 | Wang L, Pan Y C, Lee J D, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
11 | Li Z Z, Wang S L, Shao Y J, et al. Experimental study on convective heat transfer characteristics of supercritical carbon dioxide in a vertical tube with low mass flux[J]. Applied Thermal Engineering, 2023, 230: 120798. |
12 | 王磊, 曹雄金, 罗凯, 等. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547. |
Wang L, Cao X J, Luo K, et al. Heat transfer characteristics of supercritical CO2 in mini-type heating tube with the different flow directions[J]. CIESC Journal, 2023, 74(11): 4535-4547. | |
13 | 李妮, 浦航, 周林, 等. 矩形通道内超临界压力CO2流动换热数值研究[J]. 推进技术, 2024, 45(8): 150-160. |
Li N, Pu H, Zhou L, et al. Numerical study of flow and heat transfer characteristics of supercritical pressure CO2 in rectangular channel[J]. Journal of Propulsion Technology, 2024, 45(8): 150-160. | |
14 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
15 | Yi Z M, Xu Y, Chen X L. Numerical study on heat transfer characteristics of supercritical CO2 in a vertical heating serpentine micro-tube[J]. Applied Thermal Engineering, 2022, 212: 118609. |
16 | Bazargan M, Fraser D, Chatoorgan V. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube[J]. Journal of Heat Transfer, 2005, 127(8): 897-902. |
17 | Petukhov B S, Polyakov A F, Kuleshov V A, et al. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermogravitational forces[C]//Proceeding of International Heat Transfer Conference 5. Tokyo, Japan: Begellhouse, 1974. |
18 | Jackson J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
19 | Tanimizu K, Sadr R. Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube[J]. Heat and Mass Transfer, 2016, 52(4): 713-726. |
20 | 程亮元, 王清洋, 王庆华, 等. 基于类沸腾理论的超临界CO2水平管内强制对流换热特性[J]. 中国电机工程学报, 2023, 43(17): 6718-6727. |
Cheng L Y, Wang Q Y, Wang Q H, et al. Heat transfer characteristics of forced convection in supercritical CO2 horizontal tube based on pseudo-boiling theory[J]. Proceedings of the CSEE, 2023, 43(17): 6718-6727. | |
21 | McEligot D M, Coon C W, Perkins H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13: 431-433. |
22 | Murphy H D, Chambers F W, Mceligot D M. Laterally converging flow(Part 1): Mean flow[J]. Journal of Fluid Mechanics, 1983, 127: 379. |
23 | 刘光旭, 黄彦平, 王俊峰, 等. 浮升力效应和流动加速效应对超临界二氧化碳换热影响理论分析[J]. 核动力工程, 2018, 39(6): 34-38. |
Liu G X, Huang Y P, Wang J F, et al. Theoretical analysis of effect of buoyancy and flow acceleration on heat transfer of supercritical carbon dioxide[J]. Nuclear Power Engineering, 2018, 39(6): 34-38. | |
24 | Bringer R P, Smith J M. Heat transfer in the critical region[J]. AIChE Journal, 1957, 3(1): 49-55. |
25 | Pioro I, Gupta S, Mokry S. Heat-transfer correlations for supercritical-water and carbon dioxide flowing upward in vertical bare tubes[C]//Proceedings of the ASME 2012 Summer: Heat Transfer Conference. Rio Grande, Puerto Rico, USA, 2012. |
26 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
27 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
28 | Lyu H C, Wang H, Huang Y P, et al. Visualization experiments and piston effect of heat transfer for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2023, 198: 105905. |
29 | Preda T, Saltanov E, Pioro I, et al. Development of a heat transfer correlation for supercritical CO2 based on multiple data sets[C]//2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference, Anaheim, California, USA, 2013: 211-217. |
30 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
[1] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
[2] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
[3] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[4] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of liquid-liquid heterogeneous reactions and intensification methods towards their transfer processes [J]. CIESC Journal, 2025, 76(4): 1391-1403. |
[5] | Deqi PENG, Kuilin LIU, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Enhanced heat transfer performance of vibrating reciprocating helix and micro-morphological analysis of crystallization scale [J]. CIESC Journal, 2025, 76(4): 1559-1568. |
[6] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[7] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[8] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
[9] | Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube [J]. CIESC Journal, 2025, 76(3): 975-984. |
[10] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[11] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[12] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[13] | Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer [J]. CIESC Journal, 2025, 76(3): 1040-1049. |
[14] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
[15] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||