CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1583-1594.DOI: 10.11949/0438-1157.20241134

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels

Luochang WU(), Zeyu YANG, Jianguo YAN(), Xutao ZHU, Yang CHEN, Zichen WANG   

  1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
  • Received:2024-10-14 Revised:2024-12-26 Online:2025-05-12 Published:2025-04-25
  • Contact: Jianguo YAN

微小方形通道内近超临界压力二氧化碳流动换热特性实验研究

吴罗长(), 杨泽宇, 颜建国(), 朱旭涛, 陈阳, 王子辰   

  1. 西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西 西安 710048
  • 通讯作者: 颜建国
  • 作者简介:吴罗长(1978—),男,副教授,wlc@xaut.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划项目(2024JC-YBMS-330);陕西省创新能力支撑计划项目(2024RS-CXTD-31);陕西省技术创新引导计划项目(2024QCY-KXJ-050)

Abstract:

An experimental study was conducted on the flow and heat transfer characteristics of supercritical CO2 in a 1.6 mm × 1.6 mm horizontal square tube under heated conditions. The experimental parameters were: system pressure between 7.4 to 8.4 MPa (relative pressure p/pcr = 1.003—1.138), mass flux ranging from 500 to 1500 kg/(m²·s), and heat flux from 100 to 300 kW/m². The influence of thermal parameters, buoyancy and thermal acceleration effect on heat transfer characteristics in square pipes is analyzed. According to the distribution characteristics of heat transfer curves, supercritical CO2 flow heat transfer is divided into three regions: liquid-like, two-phase, and gas-like. The experimental results showed that increasing the mass flow rate and reducing the heat flux effectively enhanced the convective heat transfer coefficient, achieving improved heat transfer. In the square microchannel, buoyancy strengthened heat transfer at the bottom wall, while the top wall experienced weaker heat transfer. The effect of thermal acceleration on convective heat transfer in this experiment was found to be negligible. A new dimensionless heat flux, q+, was introduced based on mass flux, wall, and mainstream temperatures, and a new heat transfer correlation was derived using q+ and other influencing factors, with a prediction error range of +20% to -20%.

Key words: supercritical carbon dioxide, convection, heat transfer, microchannels, buoyancy

摘要:

开展超临界二氧化碳1.6 mm × 1.6 mm水平方形管道内受热条件下流动换热特性的实验研究。实验参数为系统压力7.4~8.4 MPa(相对压力p/pcr = 1.003~1.138),质量流速500~1500 kg/(m2·s),热通量100~300 kW/m2。分析了热工参数、浮升力和热加速效应对方管内换热特性的影响规律,根据换热曲线分布特性,将超临界CO2流动换热分为类液相、类两相、类气相3个区域。实验结果表明:类两相区域时,在临界温度处平均壁温与主流温度的差值存在最小值,平均对流传热系数存在峰值。类气态区域内的换热性能较类液相区域相对减弱。浮升力使底部壁面换热得到强化,相比之下顶部壁面的换热较弱,流体热加速效应对本实验对流换热影响几乎可以忽略。通过引入表征浮升力效应的无量纲热通量q+,提出一个适用于方形微小通道超临界CO2换热关联式,预测误差范围为+20%~-20%。

关键词: 超临界二氧化碳, 对流, 换热, 微通道, 浮升力

CLC Number: