CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2667-2677.DOI: 10.11949/0438-1157.20241447
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaotian MI1(
), Hongchen LIU1(
), Kejun WANG2, Wenna TANG1, Yongwei XU1, Mei YANG3
Received:2024-12-13
Revised:2025-01-07
Online:2025-07-09
Published:2025-06-25
Contact:
Hongchen LIU
米晓天1(
), 刘宏臣1(
), 王克军2, 唐文娜1, 徐永伟1, 杨梅3
通讯作者:
刘宏臣
作者简介:米晓天(2000—),女,硕士,2279072974@qq.com
基金资助:CLC Number:
Xiaotian MI, Hongchen LIU, Kejun WANG, Wenna TANG, Yongwei XU, Mei YANG. Mass transfer study of CO2 absorption by TETA/DEEA biphasic absorbent in the microchannel[J]. CIESC Journal, 2025, 76(6): 2667-2677.
米晓天, 刘宏臣, 王克军, 唐文娜, 徐永伟, 杨梅. 微通道内两相吸收剂TETA/DEEA吸收CO2过程的传质研究[J]. 化工学报, 2025, 76(6): 2667-2677.
Add to citation manager EndNote|Ris|BibTeX
| CTETA/(mol/L) | CDEEA/(mol/L) | 总胺浓度 CT/(mol/L) | 总胺中TETA 占比M | 密度 ρ/(kg·m-3) | 黏度 μ/(mPa·s) |
|---|---|---|---|---|---|
| 0.5 | 2.0 | 2.5 | 0.2 | 965 | 7.6 |
| 0.6 | 2.4 | 3.0 | 0.2 | 970 | 12.2 |
| 0.7 | 2.8 | 3.5 | 0.2 | 968 | 22.3 |
| 0.8 | 3.2 | 4.0 | 0.2 | 948 | 30.7 |
| 1.6 | 2.4 | 4.0 | 0.4 | 979 | 78.9 |
| 2.4 | 1.6 | 4.0 | 0.6 | 989 | 118.8 |
| 3.2 | 0.8 | 4.0 | 0.8 | 992 | 122.6 |
Table 1 Physical properties of the TETA/DEEA biphasic solvents
| CTETA/(mol/L) | CDEEA/(mol/L) | 总胺浓度 CT/(mol/L) | 总胺中TETA 占比M | 密度 ρ/(kg·m-3) | 黏度 μ/(mPa·s) |
|---|---|---|---|---|---|
| 0.5 | 2.0 | 2.5 | 0.2 | 965 | 7.6 |
| 0.6 | 2.4 | 3.0 | 0.2 | 970 | 12.2 |
| 0.7 | 2.8 | 3.5 | 0.2 | 968 | 22.3 |
| 0.8 | 3.2 | 4.0 | 0.2 | 948 | 30.7 |
| 1.6 | 2.4 | 4.0 | 0.4 | 979 | 78.9 |
| 2.4 | 1.6 | 4.0 | 0.6 | 989 | 118.8 |
| 3.2 | 0.8 | 4.0 | 0.8 | 992 | 122.6 |
Fig.6 Effect of gas flow rates on the evolution of bubble volume reduction (a) and CO2 absorption percent (b) along the microchannel (QL=3 ml/min, CT=4 mol/L, M=0.2)
Fig.7 Effect of liquid flow rates on the evolution of bubble volume reduction (a) and CO2 absorption percent (b) along the microchannel (QG=4 ml/min, CT=4 mol/L, M=0.2)
Fig.8 Effect of absorbent concentrations on the evolution of bubble volume reduction (a) and CO2 absorption percent (b) along the microchannel (M=0.2, QL=5 ml/min, QG=20 mL/min)
Fig.9 Effect of TETA proportion on the evolution of bubble volume reduction (a) and CO2 absorption percent (b) along the microchannel (CT=4 mol/L, QL=5 ml/min, QG=20 mL/min)
| [1] | Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
| [2] | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
| [3] | Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
| [4] | Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3917-3924. |
| [5] | Borhani T N, Wang M H. Role of solvents in CO2 capture processes: the review of selection and design methods[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109299. |
| [6] | Jing G H, Qian Y H, Zhou X B, et al. Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1182-1191. |
| [7] | Sun C, Wen S J, Zhao J K, et al. Mechanism and kinetics study of CO2 absorption into blends of N-methyldiethanolamine and 1-hydroxyethyl-3-methylimidazolium glycine aqueous solution[J]. Energy & Fuels, 2017, 31(11): 12425-12433. |
| [8] | Heldebrant D J, Koech P K, Glezakou V A, et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook[J]. Chemical Reviews, 2017, 117(14): 9594-9624. |
| [9] | Raksajati A, Ho M T, Wiley D E. Comparison of solvent development options for capture of CO2 from flue gases[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6746-6758. |
| [10] | Wang X F, Akhmedov N G, Hopkinson D, et al. Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2 [J]. Applied Energy, 2016, 161: 41-47. |
| [11] | Zhang X W, Zhang R, Liu H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
| [12] | Zhang W D, Jin X H, Tu W W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
| [13] | Zhuang Q, Clements B, Dai J Y, et al. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps[J]. International Journal of Greenhouse Gas Control, 2016, 52: 449-460. |
| [14] | Raynal L, Bouillon P A, Gomez A, et al. From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture[J]. Chemical Engineering Journal, 2011, 171(3): 742-752. |
| [15] | Yang F S, Jin X H, Fang J W, et al. Development of CO2 phase change absorbents by means of the cosolvent effect[J]. Green Chemistry, 2018, 20(10): 2328-2336. |
| [16] | Wang L D, Liu S S, Wang R J, et al. Regulating phase separation behavior of a DEEA-TETA biphasic solvent using sulfolane for energy-saving CO2 capture[J]. Environmental Science & Technology, 2019, 53(21): 12873-12881. |
| [17] | Zhang S H, Shen Y, Shao P J, et al. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas[J]. Environmental Science & Technology, 2018, 52(6): 3660-3668. |
| [18] | Wang L D, Yu S H, Li Q W, et al. Performance of sulfolane/DETA hybrids for CO2 absorption: phase splitting behavior, kinetics and thermodynamics[J]. Applied Energy, 2018, 228: 568-576. |
| [19] | Ye Q, Wang X L, Lu Y Q. Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 39: 205-214. |
| [20] | Zhang S H, Shen Y, Wang L D, et al. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
| [21] | Aghel B, Sahraie S, Heidaryan E, et al. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor[J]. Process Safety and Environmental Protection, 2019, 131: 152-159. |
| [22] | 宋仕容, 刘宏臣, 米晓天, 等. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
| Song S R, Liu H C, Mi X T, et al. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel[J]. CIESC Journal, 2024, 75(2): 566-574. | |
| [23] | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
| [24] | Chen G W, Yue J, Yuan Q. Gas-liquid microreaction technology: recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 663-669. |
| [25] | Kashid M N, Renken A, Kiwi-Minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science, 2011, 66(17): 3876-3897. |
| [26] | Chu C Y, Zhang F B, Zhu C Y, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
| [27] | Xu Z B, Wang T T, Wu J M, et al. Mass transfer characteristics of CO2 and blended aqueous solutions of [C2OHmim] [Lys]/MDEA in a microchannel[J]. Industrial & Engineering Chemistry Research, 2023, 62(22): 8926-8938. |
| [28] | Guo R W, Zhu C Y, Yin Y R, et al. Mass transfer characteristics of CO2 absorption into 2-amino-2-methyl-1-propanol non-aqueous solution in a microchannel[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 194-201. |
| [29] | Shaterabadi F, Rashidi H. Experimental and modeling study of CO2 capture by phase change blend of triethylenetetramine-ethanol solvent[J]. Energy, 2024, 307: 132809. |
| [30] | Ye J X, Jiang C K, Chen H, et al. Novel biphasic solvent with tunable phase separation for CO2 capture: role of water content in mechanism, kinetics, and energy penalty[J]. Environmental Science & Technology, 2019, 53(8): 4470-4479. |
| [31] | Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
| [32] | Yao C Q, Zhao Y C, Ye C B, et al. Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chemical Engineering Science, 2013, 95: 246-256. |
| [33] | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
| Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
| [34] | Yao C Q, Zhao Y C, Zheng J, et al. The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, 66(5): e16934. |
| [35] | Powell R E, Roseveare W E, Eyring H. Diffusion, thermal conductivity, and viscous flow of liquids[J]. Industrial & Engineering Chemistry, 1941, 33(4): 430-435. |
| [36] | Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim] [BF4] aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552. |
| [37] | Kies F K, Benadda B, Otterbein M. Experimental study on mass transfer of a co-current gas-liquid contactor performing under high gas velocities[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(11): 1389-1395. |
| [38] | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
| [39] | Li C F, Zhu C Y, Ma Y G, et al. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor[J]. International Journal of Heat and Mass Transfer, 2014, 78: 1055-1059. |
| [1] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| [2] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [3] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [4] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [5] | Congqi HUANG, Shuangquan SHAO. Research on characteristics of compression-absorption refrigeration system driven by waste heat in liquid-cooled data center [J]. CIESC Journal, 2025, 76(S1): 326-335. |
| [6] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [7] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [8] | Changqiu HE, Jiameng TIAN, Yiqi CHEN, Yuchen ZHU, Xin LIU, Hai WANG, Zhentao WANG, Junfeng WANG, Zhifu ZHOU, Bin CHEN. Synergistic heat transfer enhancement characteristics due to electric field and macro-structured surface during thin film boiling [J]. CIESC Journal, 2025, 76(6): 2589-2602. |
| [9] | Ruijie MA, Zixuan HUANG, Xueqian GUAN, Guangjin CHEN, Bei LIU. Efficient ethane and methane separation using ZIF-8/DMPU slurry [J]. CIESC Journal, 2025, 76(5): 2262-2269. |
| [10] | Guanglei WANG, Xiaoling LIU, Zhen XU, Lin LI. Performances of gas-water direct contact heat exchange for compressed air energy storage [J]. CIESC Journal, 2025, 76(4): 1595-1603. |
| [11] | Feng ZHU, Yue ZHAO, Fengxiang MA, Wei LIU. Adsorption properties of modified UIO-66 for SF6/N2 gas mixture and its decomposition products [J]. CIESC Journal, 2025, 76(4): 1604-1616. |
| [12] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
| [13] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of liquid-liquid heterogeneous reactions and intensification methods towards their transfer processes [J]. CIESC Journal, 2025, 76(4): 1391-1403. |
| [14] | Yihao JIN, Junxin LUO, Zhangmao HU, Wei WANG, Qian YIN. Experimental investigation on hydrophilic functionalized MgSO4/expanded vermiculite composites for water adsorption and heat storage [J]. CIESC Journal, 2025, 76(4): 1852-1862. |
| [15] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||