CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3477-3486.DOI: 10.11949/0438-1157.20241029

• Energy and environmental engineering • Previous Articles     Next Articles

Research on thermodynamic properties of supercritical compressed carbon dioxide energy storage system with waste heat recovery

Zeming DONG(), Juwei LOU, Nan WANG, Liangqi CHEN, Jiangfeng WANG(), Pan ZHAO   

  1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-09-13 Revised:2025-03-18 Online:2025-08-13 Published:2025-07-25
  • Contact: Jiangfeng WANG

含余热回收的超临界压缩二氧化碳储能系统热力学特性研究

董泽明(), 娄聚伟, 王楠, 陈良奇, 王江峰(), 赵攀   

  1. 西安交通大学能源与动力工程学院,陕西 西安 710049
  • 通讯作者: 王江峰
  • 作者简介:董泽明(2001—),男,硕士研究生,18223737710@stu.xjtu.edu.cn
  • 基金资助:
    陕西高校青年创新团队项目

Abstract:

Compressed carbon dioxide energy storage system has attracted wide attention due to its advantages of high round-trip efficiency and high energy storage density, and is considered to be a promising energy storage technology. In this paper, we propose a supercritical compressed carbon dioxide energy storage system with turbine waste heat recovery and establish a thermodynamic model of the system. In accordance with the principles of thermodynamics, a critical parameter analysis and a thermodynamic analysis of the system are conducted. In order to achieve the optimal round-trip efficiency and energy storage density of the system, genetic algorithms are employed to conduct both single-objective and multi-objective optimization of the four key system parameters. This approach enables the identification of the optimal system performance. The results demonstrate that, under the specified parameters, the system exhibits a round-trip efficiency of 37.21%, a power efficiency of 33.44%, and an energy storage density of 8.31 kW·h·m-3. Among the four key parameters, the low-pressure tank pressure and the turbine inlet temperature have a more obvious impact on the system performance. Single-objective optimization yielded an optimal round-trip efficiency of 52.69% and an optimal energy storage density of 17.16 kW·h·m-3. Multi-objective optimization yielded an optimal solution with favorable overall performance, with a round-trip efficiency of 46.88% and an energy storage density of 13.97 kW·h·m-3.

Key words: supercritical, carbon dioxide, waste heat recovery, energy storage, thermodynamics, optimization

摘要:

压缩二氧化碳储能系统因其往返效率高、储能密度大的优点受到广泛关注,被认为是一种极具发展前景的储能技术。提出了透平余热回收的超临界压缩二氧化碳储能系统并建立了系统热力学模型,基于热力学定律对系统进行关键参数分析及热力性分析;以系统的往返效率和储能密度为优化目标,采用遗传算法对系统4个关键参数分别进行单目标优化及多目标优化,获取了最优系统性能。结果显示,在给定参数下系统的往返效率为37.21%,㶲效率为33.44%,储能密度为8.31 kW∙h∙m-3;4个关键参数中,低压储罐压力和透平进口温度对系统性能影响更加明显;单目标优化获得最优系统的往返效率为52.69%,最优储能密度为17.16 kW∙h∙m-3;多目标优化获得一个综合性能良好的优化解,此时系统的往返效率为46.88%,储能密度为13.97 kW∙h∙m-3

关键词: 超临界, 二氧化碳, 余热回收, 储能, 热力学, 优化

CLC Number: