CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3487-3497.DOI: 10.11949/0438-1157.20250377
• Energy and environmental engineering • Previous Articles Next Articles
Qinwen LIU1(
), Hengbing YE1, Yiwei ZHANG1, Fahua ZHU2, Wenqi ZHONG1(
)
Received:2025-04-11
Revised:2025-05-26
Online:2025-08-13
Published:2025-07-25
Contact:
Wenqi ZHONG
刘沁雯1(
), 叶恒冰1, 张逸伟1, 朱法华2, 钟文琪1(
)
通讯作者:
钟文琪
作者简介:刘沁雯(1995—),女,博士,讲师,lqw@seu.edu.cn
基金资助:CLC Number:
Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter[J]. CIESC Journal, 2025, 76(7): 3487-3497.
刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 元素分析/%(质量) | 工业分析/%(质量) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| C | H | N | S | O | M | A | V | FC | |
| 烟煤 | 70.59 | 2.45 | 1.07 | 1.28 | 5.68 | 1.71 | 17.22 | 14.80 | 66.27 |
| 鸡粪 | 31.92 | 4.77 | 3.21 | 0.70 | 22.77 | 7.39 | 29.24 | 56.40 | 6.97 |
Table 1 Ultimate analysis and proximate analysis results of bituminous coal and poultry litter (air dried basis)
| 样品 | 元素分析/%(质量) | 工业分析/%(质量) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| C | H | N | S | O | M | A | V | FC | |
| 烟煤 | 70.59 | 2.45 | 1.07 | 1.28 | 5.68 | 1.71 | 17.22 | 14.80 | 66.27 |
| 鸡粪 | 31.92 | 4.77 | 3.21 | 0.70 | 22.77 | 7.39 | 29.24 | 56.40 | 6.97 |
| 样品 | 含量/%(质量) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Na2O | MgO | Al2O3 | SiO2 | SO3 | P2O5 | Cl | K2O | CaO | Fe2O3 | |
| 烟煤 | 0.07 | 0.29 | 21.45 | 32.15 | 35.67 | — | 0.37 | 1.20 | 2.32 | 3.52 |
| 鸡粪 | 0.41 | 1.12 | 1.73 | 4.76 | 5.08 | 9.49 | 4.13 | 20.13 | 45.38 | 5.87 |
Table 2 X-ray fluorescence spectroscopy analysis results of bituminous coal and poultry litter
| 样品 | 含量/%(质量) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Na2O | MgO | Al2O3 | SiO2 | SO3 | P2O5 | Cl | K2O | CaO | Fe2O3 | |
| 烟煤 | 0.07 | 0.29 | 21.45 | 32.15 | 35.67 | — | 0.37 | 1.20 | 2.32 | 3.52 |
| 鸡粪 | 0.41 | 1.12 | 1.73 | 4.76 | 5.08 | 9.49 | 4.13 | 20.13 | 45.38 | 5.87 |
| MPL/% | B/A | Fu | ENa | SR | BAI |
|---|---|---|---|---|---|
| 0 | 0.05 | 0.05 | 0.13 | 92.41 | 2.27 |
| 25 | 0.54 | 3.80 | 1.12 | 54.97 | 1.03 |
| 50 | 3.01 | 32.41 | 2.19 | 19.16 | 0.42 |
| 75 | 5.15 | 68.61 | 2.35 | 14.02 | 0.34 |
| 100 | 7.16 | 79.36 | 2.48 | 9.58 | 0.32 |
Table 3 Tendency of ash fouling /slagging/agglomeration from pressurized oxy-fuel co-combustion of coal and poultry litter
| MPL/% | B/A | Fu | ENa | SR | BAI |
|---|---|---|---|---|---|
| 0 | 0.05 | 0.05 | 0.13 | 92.41 | 2.27 |
| 25 | 0.54 | 3.80 | 1.12 | 54.97 | 1.03 |
| 50 | 3.01 | 32.41 | 2.19 | 19.16 | 0.42 |
| 75 | 5.15 | 68.61 | 2.35 | 14.02 | 0.34 |
| 100 | 7.16 | 79.36 | 2.48 | 9.58 | 0.32 |
| [1] | 中国产业发展促进会生物质能产业分会. 3060零碳生物质能发展潜力蓝皮书[R]. 北京, 2021. |
| Biomass Energy Industry Branch of China Association for the Promotion of Industrial Development. 3060 zero-carbon biomass development potential blue book [R]. Beijing, 2021. | |
| [2] | Rout P R, Pandey D S, Haynes-Parry M, et al. Sustainable valorisation of animal manures via thermochemical conversion technologies: an inclusive review on recent trends[J]. Waste and Biomass Valorization, 2023, 14(2): 553-582. |
| [3] | Billen P, Costa J, van der Aa L, et al. Electricity from poultry manure: a cleaner alternative to direct land application[J]. Journal of Cleaner Production, 2015, 96: 467-475. |
| [4] | Santos Dalólio F, da Silva J N, Carneiro de Oliveira A C, et al. Poultry litter as biomass energy: a review and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 941-949. |
| [5] | Maj I. Significance and challenges of poultry litter and cattle manure as sustainable fuels: a review[J]. Energies, 2022, 15(23): 8981. |
| [6] | Katsaros G, Sommersacher P, Retschitzegger S, et al. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor[J]. Fuel, 2021, 286: 119310. |
| [7] | 胡春才, 赵鹏勃, 李楠, 等. 鸡粪与稻壳混合燃料CFB燃烧特性试验研究[J]. 电站系统工程, 2019, 35(2): 29-32. |
| Hu C C, Zhao P B, Li N, et al. Experimental investigation of combustion characteristic for mixed fuel of chicken manure and rice husk in CFB test facility[J]. Power System Engineering, 2019, 35(2): 29-32. | |
| [8] | Otero M, Sánchez M E, Gómez X. Co-firing of coal and manure biomass: a TG-MS approach[J]. Bioresource Technology, 2011, 102(17): 8304-8309. |
| [9] | Junga R, Knauer W, Niemiec P, et al. Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis[J]. Renewable Energy, 2017, 111: 245-255. |
| [10] | Symonds R T, Hughes R W, de Las Obras Loscertales M. Oxy-pressurized fluidized bed combustion: configuration and options analysis[J]. Applied Energy, 2020, 262: 114531. |
| [11] | 刘沁雯, 钟文琪, 邵应娟, 等. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807. |
| Liu Q W, Zhong W Q, Shao Y J, et al. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807. | |
| [12] | 石岩. 循环流化床富氧煤燃烧捕集CO2的系统构建与优化研究[D]. 南京:东南大学, 2022. |
| Shi Y. Research on system construction and optimization of CO2 capture by circulating fluidized bed oxygen-enriched coal combustion[D]. Nanjing: Southeast University, 2022. | |
| [13] | Shi Y, Zhong W Q, Shao Y J, et al. Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed[J]. Applied Thermal Engineering, 2019, 150: 1104-1115. |
| [14] | Hong J, Field R, Gazzino M, et al. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy, 2010, 35(12): 5391-5399. |
| [15] | Pang L, Shao Y J, Zhong W Q, et al. Experimental study of SO2 emissions and desulfurization of oxy-coal combustion in a 30 kWth pressurized fluidized bed combustor[J]. Fuel, 2020, 264: 116795. |
| [16] | 昝海峰, 陈晓平, 刘道银, 等. 100 kWth加压循环流化床富氧燃烧试验研究[J]. 煤炭学报, 2022, 47(10): 3822-3828. |
| Zan H F, Chen X P, Liu D Y, et al. Experimental research on oxygen-enriched combustion at 100 kWth pressurized circulating fluidized bed[J]. Journal of China Coal Society, 2022, 47(10): 3822-3828. | |
| [17] | Zhu Y, Yi B J, Yuan Q X, et al. Combustion characteristics of cattle manure and pulverized coal co-firing under oxy-fuel atmosphere in non-isothermal and isothermal conditions[J]. BioResources, 2018, 13(3): 6465-6479. |
| [18] | López-González D, Parascanu M M, Fernandez-Lopez M, et al. Effect of different concentrations of O2 under inert and CO2 atmospheres on the swine manure combustion process[J]. Fuel, 2017, 195: 23-32. |
| [19] | Jia L F, Anthony E J. Combustion of poultry-derived fuel in a coal-fired pilot-scale circulating fluidized bed combustor[J]. Fuel Processing Technology, 2011, 92(11): 2138-2144. |
| [20] | Atimtay A, Yurdakul S. Combustion and co-combustion characteristics of torrefied poultry litter with lignite[J]. Renewable Energy, 2020, 148: 1292-1301. |
| [21] | Yurdakul S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry[J]. Renewable Energy, 2016, 89: 215-223. |
| [22] | Turzyński T, Kluska J, Kardaś D. Study on chicken manure combustion and heat production in terms of thermal self-sufficiency of a poultry farm[J]. Renewable Energy, 2022, 191: 84-91. |
| [23] | Liu Q W, Zhong W Q, Yu A B, et al. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode in a 10 kWth fluidized bed: nitrogen and sulfur pollutants[J]. Chemical Engineering Journal, 2022, 450: 138401. |
| [24] | Liu Q W, Zhong W Q, Yu A B, et al. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode: experimental test in a 10 kWth fluidized bed[J]. Chemical Engineering Journal, 2022, 431: 133457. |
| [25] | Zhang J H, Sun G, Liu J Y, et al. Co-combustion of textile dyeing sludge with cattle manure: assessment of thermal behavior, gaseous products, and ash characteristics[J]. Journal of Cleaner Production, 2020, 253: 119950. |
| [26] | Wzorek M, Junga R, Yilmaz E, et al. Combustion behavior and mechanical properties of pellets derived from blends of animal manure and lignocellulosic biomass[J]. Journal of Environmental Management, 2021, 290: 112487. |
| [27] | Liu S, Cao W, Wang Y, et al. Characteristics and mechanisms of nitrogen transformation during chicken manure gasification in supercritical water[J]. Waste Management, 2022, 153: 240-248. |
| [28] | 梁晓锐. 煤/生物质加压富氧燃烧过程中硫氮的迁移和转化特性研究[D]. 杭州: 浙江大学, 2022. |
| Liang X R. Study on migration and transformation characteristics of sulfur and nitrogen during pressurized oxygen-enriched combustion of coal/biomass[D]. Hangzhou: Zhejiang University, 2022. | |
| [29] | Li L Y, Cheng L M, Wang B, et al. Experimental study on the effect of limestone on SO2 and NO emission characteristics during coal/coke combustion[J]. Journal of the Energy Institute, 2023, 111: 101403. |
| [30] | 袁帅. 煤、生物质及其混合物的快速热解及过程中氮的迁移[D]. 上海: 华东理工大学, 2012. |
| Yuan S. Rapid pyrolysis of coal, biomass and their mixtures and nitrogen migration in the process[D]. Shanghai: East China University of Science and Technology, 2012. | |
| [31] | Zhang J H, Chen J C, Liu J Y, et al. Fates of heavy metals, S, and P during co-combustion of textile dyeing sludge and cattle manure[J]. Journal of Cleaner Production, 2023, 383: 135316. |
| [32] | 应芝, 张彦威, 葛立超, 等. 加压O2/CO2气氛下煤粉着火特性的实验研究[J]. 中国电机工程学报, 2013, 33(8): 44-49, 9. |
| Ying Z, Zhang Y W, Ge L C, et al. Experimental research on ignition characteristics of pulverized coal under pressurized O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2013, 33(8): 44-49, 9. | |
| [33] | Fernandez-Lopez M, Puig-Gamero M, Lopez-Gonzalez D, et al. Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes[J]. Bioresource Technology, 2015, 182: 184-192. |
| [34] | 颜济青. 煤/生物质加压富氧燃烧及氮转化特性研究与系统模拟[D]. 杭州: 浙江大学, 2023. |
| Yan J Q. Research and system simulation of coal/biomass pressure enriched combustion and nitrogen conversion characteristics[D]. Hangzhou: Zhejiang University, 2023. | |
| [35] | Wang X B, Yablonsky G S, Rahman Z, et al. Assessment of sulfur trioxide formation due to enhanced interaction of nitrogen oxides and sulfur oxides in pressurized oxy-combustion[J]. Fuel, 2021, 290: 119964. |
| [36] | Grubor B, Manovic V. Influence of non-uniformity of coal and distribution of active calcium on sulfur self-retention by ash: a case study of lignite kolubara[J]. Energy & Fuels, 2002, 16(4): 951-955. |
| [37] | Anthony E J, Granatstein D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27(2): 215-236. |
| [38] | Głód K, Lasek J, Słowik K, et al. Investigation of ash-related issues during combustion of maize straw and wood biomass blends in lab-scale bubbling fluidized bed reactor[J]. Journal of Energy Resources Technology, 2020, 142(2): 022201. |
| [39] | Garcia-Maraver A, Mata-Sanchez J, Carpio M, et al. Critical review of predictive coefficients for biomass ash deposition tendency[J]. Journal of the Energy Institute, 2017, 90(2): 214-228. |
| [40] | Teixeira P, Lopes H, Gulyurtlu I, et al. Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed[J]. Biomass and Bioenergy, 2012, 39: 192-203. |
| [41] | Zhu C, Tu H, Bai Y, et al. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal[J]. Fuel, 2019, 254: 115730. |
| [42] | Lasek J A, Głód K, Słowik K. The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure[J]. Renewable Energy, 2021, 179: 828-841. |
| [43] | Jing N J, Wang Q H, Cheng L M, et al. Effect of temperature and pressure on the mineralogical and fusion characteristics of Jincheng coal ash in simulated combustion and gasification environments[J]. Fuel, 2013, 104: 647-655. |
| [44] | Zhou C G, Rosén C, Engvall K. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: agglomeration behavior[J]. Applied Energy, 2016, 172: 230-250. |
| [45] | Lasek J A, Janusz M, Zuwała J, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62: 105-112. |
| [1] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [2] | Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass [J]. CIESC Journal, 2025, 76(7): 3539-3551. |
| [3] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [4] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [5] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [6] | Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system [J]. CIESC Journal, 2025, 76(3): 1230-1242. |
| [7] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
| [8] | Zihang ZHAI, Jie JIANG, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis and properties of ternary random copolyester PBSF based on 2,5-furandicarboxylic acid [J]. CIESC Journal, 2025, 76(2): 868-878. |
| [9] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
| [10] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
| [11] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
| [12] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
| [13] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
| [14] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
| [15] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||