CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5141-5149.DOI: 10.11949/0438-1157.20250209
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Kun ZHANG1(
), Tieshan ZOU1,2, Haifeng ZHANG1, Xiaotong HAN2(
), Yanxiong FANG3(
)
Received:2025-03-04
Revised:2025-03-21
Online:2025-11-25
Published:2025-10-25
Contact:
Xiaotong HAN, Yanxiong FANG
张坤1(
), 邹铁山1,2, 张海丰1, 韩晓彤2(
), 方岩雄3(
)
通讯作者:
韩晓彤,方岩雄
作者简介:张坤(1991—),男,博士,讲师,zhangkun@neepu.edu.cn
基金资助:CLC Number:
Kun ZHANG, Tieshan ZOU, Haifeng ZHANG, Xiaotong HAN, Yanxiong FANG. Preparation of cobalt-iron hydrogen phosphite bifunctional water electrolysis catalyst by one-step electrodeposition[J]. CIESC Journal, 2025, 76(10): 5141-5149.
张坤, 邹铁山, 张海丰, 韩晓彤, 方岩雄. 一步电沉积法制备钴铁亚磷酸氢盐双功能电解水催化剂[J]. 化工学报, 2025, 76(10): 5141-5149.
Add to citation manager EndNote|Ris|BibTeX
| [1] | 李宇明, 徐砚文, 刘红宇, 等. 镍基磷化物的合成及其在电解水制氢中的应用[J]. 化工学报, 2024, 75(12): 4385-4402. |
| Li Y M, Xu Y W, Liu H Y, et al. Synthesis and application of nickel-based phosphide in water electrolysis for hydrogen evolution[J]. CIESC Journal, 2024, 75(12): 4385-4402. | |
| [2] | Li J W, Yin W N, Pan J N, et al. External field assisted hydrogen evolution reaction[J]. Nano Research, 2023, 16(7): 8638-8654. |
| [3] | Wang S W, Geng Z, Bi S H, et al. Recent advances and future prospects on Ni3S2-based electrocatalysts for efficient alkaline water electrolysis[J]. Green Energy & Environment, 2024, 9(4): 659-683. |
| [4] | Zheng S L, Xu H M, Zhu H R, et al. Heterostructured electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2024, 12(30): 18832-18865. |
| [5] | Wang K, He S, Li B X, et al. Relaying alkaline hydrogen evolution over locally amorphous Ni/Co-based phosphides constructed by diffusion-limited phase-transition[J]. Applied Catalysis B: Environmental, 2023, 339: 123136. |
| [6] | Li S S, Sirisomboonchai S, Yoshida A, et al. Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density[J]. Journal of Materials Chemistry A, 2018, 6(39): 19221-19230. |
| [7] | Li R P, Li Y, Yang P X, et al. Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water[J]. Journal of Energy Chemistry, 2021, 57: 547-566. |
| [8] | Zhou W J, Jia J, Lu J, et al. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J]. Nano Energy, 2016, 28: 29-43. |
| [9] | Wu D L, Chen D, Zhu J W, et al. Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media[J]. Small, 2021, 17(39): 2102777. |
| [10] | Shit S, Bolar S, Murmu N C, et al. An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts[J]. Journal of Energy Chemistry, 2021, 59: 160-190. |
| [11] | Yu L, Zhou H Q, Sun J Y, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science, 2017, 10(8): 1820-1827. |
| [12] | Qiu Z, Tai C W, Niklasson G A, et al. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(2): 572-581. |
| [13] | Miao R, He J K, Sahoo S, et al. Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting[J]. ACS Catalysis, 2017, 7(1): 819-832. |
| [14] | 陈保卫, 高文君, 徐冬, 等. 硫化铁/硫化钴复合材料的合成及催化应用[J]. 化工新型材料, 2020, 48(S1): 85-88, 93. |
| Chen B W, Gao W J, Xu D, et al. Synthesis and catalytic application of iron sulfide/cobalt sulfide composites[J]. New Chemical Materials, 2020, 48(S1): 85-88, 93. | |
| [15] | Jin L H, Xia H, Huang Z P, et al. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(28): 10925-10932. |
| [16] | Zhang X Y, Zhu Y R, Chen Y, et al. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides[J]. Chemical Engineering Journal, 2020, 399: 125831. |
| [17] | Zhao S Y, Berry-Gair J, Li W Y, et al. The role of phosphate group in doped cobalt molybdate: improved electrocatalytic hydrogen evolution performance[J]. Advanced Science, 2020, 7(12): 1903674. |
| [18] | Dhandapani H N, Mahendiran D, Karmakar A, et al. Boosting of overall water splitting activity by regulating the electron distribution over the active sites of Ce doped NiCo-LDH and atomic level understanding of the catalyst by DFT study[J]. Journal of Materials Chemistry A, 2022, 10(34): 17488-17500. |
| [19] | Song H Q, Li Y H, Shang L, et al. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium[J]. Nano Energy, 2020, 72: 104730. |
| [20] | Yan L, Zhang B, Zhu J L, et al. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 265: 118555. |
| [21] | Shen X R, Li H J, Zhang Y Y, et al. Construction dual-regulated NiCo2S4@Mo-doped CoFe-LDH for oxygen evolution reaction at large current density[J]. Applied Catalysis B: Environmental, 2022, 319: 121917. |
| [22] | Wang X Y, Yuan G J, Bai J L, et al. Modulating electronic structure of Ni2P pre-catalyst by doping trace iron for enhanced oxygen evolution reaction in alkaline[J]. Journal of Alloys and Compounds, 2022, 908: 164603. |
| [23] | Li Y J, Zhang H C, Jiang M, et al. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(37): 1702513. |
| [24] | Guo X, Li M G, Qiu L Y, et al. Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting[J]. Chemical Engineering Journal, 2023, 453: 139796. |
| [25] | Che Q J, Li Q, Tan Y, et al. One-step controllable synthesis of amorphous (Ni-Fe)S x /NiFe(OH) y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density[J]. Applied Catalysis B: Environmental, 2019, 246: 337-348. |
| [26] | Arunkumar G, Deviga G, Mariappan M, et al. Fabricating bimetallic cobalt-iron MOF nano/microcrystalline particles: strong bifunctional electrocatalytic activity and overall water splitting[J]. Dalton Transactions, 2025, 54(10): 4225-4233. |
| [27] | Xu W C, Fan G L, Zhu S L, et al. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction[J]. Advanced Functional Materials, 2021, 31(48): 2107333. |
| [28] | Peng C W, Huang R, Pan G X, et al. Fe x Ni y OOH/etched stainless steel mesh with different morphology for water electrolysis[J]. Ionics, 2020, 26(1): 301-309. |
| [29] | Zhang W Y, Jiang C Q, Guan H M, et al. Unlocking OER catalytic potential and chiral Fe3O4 film as a game-changer for electrochemical water oxidation pathway and by-product control[J]. Materials Advances, 2024, 5(3): 1340-1347. |
| [30] | Pei Y T, Zhang H J, Han L, et al. Ultra-porous Co foam supported FeCoP electrode for high efficiency hydrogen evolution reaction[J]. Nanotechnology, 2021, 32(2): 024001. |
| [31] | Zhao L, Li X, Yu J Y, et al. Design strategy of corrosion-resistant electrodes for seawater electrolysis[J]. Materials, 2023, 16(7): 2709. |
| [32] | Li H, Lin Y, Duan J Y, et al. Stability of electrocatalytic OER: from principle to application[J]. Chemical Society Reviews, 2024, 53(21): 10709-10740. |
| [33] | Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. |
| [34] | Ma M Y, Xia W, Guo X Y, et al. Constructing Ni3Se2-nanoisland-confined Pt1Mo1 dual-atom catalyst for efficient hydrogen evolution in basic media[J]. Small Structures, 2024, 5(1): 2300284. |
| [35] | Yu M Q, Li Y H, Yang S, et al. Mn3O4 nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst[J]. Journal of Materials Chemistry A, 2015, 3(27): 14101-14104. |
| [36] | He C S, Yang L L, Peng X H, et al. Alkylamine-confined thickness-tunable synthesis of Co(OH)2-CoO nanosheets toward oxygen evolution catalysis[J]. ACS Nano, 2023, 17(6): 5861-5870. |
| [37] | Zhong H Y, Zhang Q, Yu J C, et al. Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts[J]. Advanced Energy Materials, 2023, 13(31): 2301391. |
| [38] | Chen Y H, Tian M, Zhang Z Q, et al. Deliberate design of MOF-based pre-catalyst rationalizing the structural reconstruction toward efficient oxygen evolution reaction[J]. Science China Chemistry, 2025, 68: 2388-2398. |
| [39] | Wei X L, Huang Y J, Wang Q G, et al. Bimetallic RuCo anchored CoFe2O4 nanosheets to realize in-depth electronic modulation for boosted structural reconstruction and efficient seawater electrolysis[J]. Chemical Engineering Journal, 2025, 503: 158346. |
| [40] | Zhao X M, Liu X, Huang B Y, et al. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe)[J]. Journal of Materials Chemistry A, 2019, 7(42): 24583-24593. |
| [41] | Li L J, Sun C Y, Shang B, et al. Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting[J]. Journal of Materials Chemistry A, 2019, 7(30): 18003-18011. |
| [42] | Li L, Cao X J, Huo J J, et al. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J]. Journal of Energy Chemistry, 2023, 76: 195-213. |
| [1] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [2] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| [3] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [4] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [5] | Min YANG, Xinwei DUAN, Junhong WU, Jie MI, Jiancheng WANG, Mengmeng WU. COS catalyzed hydrolysis performance and deactivation mechanism of Sm2O3/γ-Al2O3 catalysts [J]. CIESC Journal, 2025, 76(8): 4061-4070. |
| [6] | Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene [J]. CIESC Journal, 2025, 76(8): 4071-4080. |
| [7] | Yitong ZHOU, Mingxi ZHOU, Ruochen LIU, Shuang YE, Weiguang HUANG. Technical and economic analysis on hydrogen based direct reduction steelmaking co-driven by photovoltaic and power grid [J]. CIESC Journal, 2025, 76(8): 4318-4330. |
| [8] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [9] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [10] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [11] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [12] | Jiaxiang CHEN, Wei ZHOU, Xuewei ZHANG, Lijie WANG, Yuming HUANG, Yang YU, Miaoting SUN, Wanjing LI, Junshu YUAN, Hongbo ZHANG, Xiaoxiao MENG, Jihui GAO, Guangbo ZHAO. Simulation study on the hydrogen production performance of a two-dimensional PEMWE model under pulsed voltage [J]. CIESC Journal, 2025, 76(7): 3521-3530. |
| [13] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [14] | Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag [J]. CIESC Journal, 2025, 76(7): 3639-3650. |
| [15] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||