CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3639-3650.DOI: 10.11949/0438-1157.20241329
• Energy and environmental engineering • Previous Articles Next Articles
Yinxiang TANG1(
), Feng ZHU1, Yingying FAN2, Yuxin LONG1, Yong DAI1, Chunling DENG1, Xiaofeng HUANG1(
)
Received:2024-11-20
Revised:2025-01-07
Online:2025-08-13
Published:2025-07-25
Contact:
Xiaofeng HUANG
唐银香1(
), 朱风1, 范莹莹2, 龙雨欣1, 代雍1, 邓春玲1, 黄小凤1(
)
通讯作者:
黄小凤
作者简介:唐银香(2000—),女,硕士研究生,2814857817@qq.com
基金资助:CLC Number:
Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag[J]. CIESC Journal, 2025, 76(7): 3639-3650.
唐银香, 朱风, 范莹莹, 龙雨欣, 代雍, 邓春玲, 黄小凤. 制备条件对改性电石渣低温共脱除COS和CS2的影响[J]. 化工学报, 2025, 76(7): 3639-3650.
Add to citation manager EndNote|Ris|BibTeX
| 化学组成 | 质量分数/% |
|---|---|
| CaO | 84.825 |
| SiO2 | 3.079 |
| Al2O3 | 1.904 |
| Cl- | 0.655 |
| SO3 | 0.567 |
| Na2O | 0.142 |
| Fe2O3 | 0.130 |
Table 1 Chemical composition of calcium carbide slag
| 化学组成 | 质量分数/% |
|---|---|
| CaO | 84.825 |
| SiO2 | 3.079 |
| Al2O3 | 1.904 |
| Cl- | 0.655 |
| SO3 | 0.567 |
| Na2O | 0.142 |
| Fe2O3 | 0.130 |
| 样品 | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) | 总硫容/(mg/g) |
|---|---|---|---|---|---|
| 改性未焙烧电石渣 | 636 | 31 | 41.96 | 0.19 | 42.15 |
| 改性焙烧电石渣 | 1744 | 56 | 180.18 | 0.50 | 180.68 |
Table 2 Penetration time and penetration sulfur capacity of modified calcium carbide slag for simultaneous removal of COS and CS2
| 样品 | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) | 总硫容/(mg/g) |
|---|---|---|---|---|---|
| 改性未焙烧电石渣 | 636 | 31 | 41.96 | 0.19 | 42.15 |
| 改性焙烧电石渣 | 1744 | 56 | 180.18 | 0.50 | 180.68 |
| 样品 | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) | 总硫容/(mg/g) |
|---|---|---|---|---|---|
| NaOH改性电石渣 | 60 | 12 | 6.44 | 0.12 | 6.56 |
| KOH改性电石渣 | 1744 | 56 | 180.18 | 0.50 | 180.68 |
Table 3 Penetration time and penetration sulfur capacity of NaOH and KOH modified calcium carbide slag for simultaneous removal of COS and CS2
| 样品 | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) | 总硫容/(mg/g) |
|---|---|---|---|---|---|
| NaOH改性电石渣 | 60 | 12 | 6.44 | 0.12 | 6.56 |
| KOH改性电石渣 | 1744 | 56 | 180.18 | 0.50 | 180.68 |
| KOH含量/%(质量分数) | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) |
|---|---|---|---|---|
| 0 | 2 | 5 | 0.10 | 0.02 |
| 2.50 | 540 | 25 | 70.51 | 0.33 |
| 3.75 | 600 | 26 | 80.53 | 0.34 |
| 6.25 | 1744 | 56 | 180.18 | 0.50 |
| 8.75 | 640 | 151 | 89.21 | 2.07 |
Table 4 Penetration time and penetration sulfur capacity for simultaneous removal of COS and CS2 from modified calcium carbide slag with different KOH contents
| KOH含量/%(质量分数) | COS穿透时间/min | CS2穿透时间/min | COS穿透硫容/(mg/g) | CS2穿透硫容/(mg/g) |
|---|---|---|---|---|
| 0 | 2 | 5 | 0.10 | 0.02 |
| 2.50 | 540 | 25 | 70.51 | 0.33 |
| 3.75 | 600 | 26 | 80.53 | 0.34 |
| 6.25 | 1744 | 56 | 180.18 | 0.50 |
| 8.75 | 640 | 151 | 89.21 | 2.07 |
| KOH含量/%(质量分数) | 比表面积/(m2/g) |
|---|---|
| 0 | 1.68 |
| 2.50 | 4.87 |
| 3.75 | 4.53 |
| 6.25 | 4.27 |
| 8.75 | 3.19 |
Table 5 Specific surface area of modified calcium carbide slag with different KOH content
| KOH含量/%(质量分数) | 比表面积/(m2/g) |
|---|---|
| 0 | 1.68 |
| 2.50 | 4.87 |
| 3.75 | 4.53 |
| 6.25 | 4.27 |
| 8.75 | 3.19 |
| [1] | Xiong Y X, Wang H X, Ren J, et al. Carbide slag recycling to fabricate shape-stable phase change composites for thermal energy storage[J]. Journal of Energy Storage, 2023, 60: 106694. |
| [2] | 张亚斌, 苏杨, 张慧荣, 等. 钢渣、电石渣增强硫化砷渣稳定化/固化机制[J]. 化工学报, 2024, 75(7): 2656-2669. |
| Zhang Y B, Su Y, Zhang H R, et al. Mechanism of enhanced arsenic sulfide stabilization/solidification by using steel slag and carbide slag[J]. CIESC Journal, 2024, 75(7): 2656-2669. | |
| [3] | 高文英. 含碱工业废弃物脱硫性能实验研究[D]. 济南: 山东大学, 2007. |
| Gao W Y. Experimental study on the desulphurization characteristics of the alkaliferous industry wastes[D]. Jinan: Shandong University, 2007. | |
| [4] | Wang F, Li H, Gao J Y, et al. Treating waste with waste: facile KHCO 3 - modified calcium carbide slag for simultaneous removal of NO and SO2 [J]. Fuel, 2023, 351: 128967. |
| [5] | 朱风, 陈凯琳, 黄小凤, 等. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
| Zhu F, Chen K L, Huang X F, et al. Performance study of KOH modified carbide slag for removal of carbonyl sulfide[J]. CIESC Journal, 2023, 74(6): 2668-2679. | |
| [6] | González Fá A J, Orazi V, Jasen P, et al. Adsorption of carbonyl sulfide on Pt-doped vacancy-defected SWCNT: a DFT study[J]. Applied Surface Science, 2020, 525: 146331. |
| [7] | 刘娜, 宁平, 李凯, 等. HCN、COS和CS2催化水解及其水解产物协同净化的研究进展[J]. 化工进展, 2018, 37(1): 301-310. |
| Liu N, Ning P, Li K, et al. Research progress in catalytic hydrolysis of HCN, COS and CS2 and synergetic purification of hydrolysates[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 301-310. | |
| [8] | 梁键星, 李咸伟, 刘道清, 等. 协同催化水解羰基硫和二硫化碳的低温催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21028-21036. |
| Liang J X, Li X W, Liu D Q, et al. A review of catalysts with activities for simultaneous hydrolyses of carbonyl sulfide and carbon disulfide at low temperatures[J]. Materials Reports, 2021, 35(21): 21028-21036. | |
| [9] | Gu J N, Liang J X, Hu S J, et al. Enhanced removal of COS from blast furnace gas via catalytic hydrolysis over Al2O3-based catalysts: insight into the role of alkali metal hydroxide[J]. Separation and Purification Technology, 2022, 295: 121356. |
| [10] | Wang F, Chen H Y, Sun X, et al. Single atom Fe in favor of carbon disulfide (CS2) adsorption and thus the removal efficiency[J]. Separation and Purification Technology, 2021, 258(P2): 118086. |
| [11] | Zhang J L, Li B C, Zhang W L, et al. Preparation of copper-based catalysts by ultrasonic co-impregnation to catalyze the hydrogenation of sec-butyl acetate[J]. Journal of Dispersion Science and Technology, 2020, 41(3): 338-347. |
| [12] | 唐兆吉, 姜艳, 杨占林, 等. 浸渍方式对Mo-Ni/γ-Al2O3加氢处理催化剂性能的影响[J]. 现代化工, 2017, 37(7): 105-108, 110. |
| Tang Z G, Jiang Y, Yang Z L, et al. Influence of impregnation method on the performance of Mo-Ni/γ-Al2O3 hydrotreating catalyst[J]. Modern Chemical Industry, 2017, 37(7): 105-108, 110. | |
| [13] | Bandosz T J. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide[J]. Carbon, 1999, 37(3): 483-491. |
| [14] | Ma W P, Zhu G Y, Li H Q, et al. Carbon emission free preparation of calcium hydroxide with calcium carbide slag (CCS) through micro-bubble impurities removal[J]. Journal of Cleaner Production, 2023, 423: 138669. |
| [15] | 董永刚, 曹建新, 刘飞, 等. 电石渣理化性质的分析与表征[J]. 环境科学与技术, 2008, 31(9): 95-98. |
| Dong Y G, Cao J X, Liu F, et al. Analysis and characterization of physiochemical property of carbide slag[J]. Environmental Science & Technology, 2008, 31(9): 95-98. | |
| [16] | Ishizuka T, Tsuchiai H, Murayama T, et al. Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1390-1396. |
| [17] | Guo F S, Li S R, Hou Y D, et al. Metalated carbon nitrides as base catalysts for efficient catalytic hydrolysis of carbonyl sulfide[J]. Chemical Communications, 2019, 55(75): 11259-11262. |
| [18] | Zhao S Z, Kang D J, Liu Y P, et al. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis[J]. ACS Catalysis, 2020, 10(20): 11739-11750. |
| [19] | Rodríguez J, Remesal E, Ramírez P, et al. Water-gas shift reaction on K/Cu(111) and Cu/K/TiO2(110) surfaces: alkali promotion of water dissociation and production of H2 [J]. ACS Catalysis, 2019, 9(12): 10751-10760. |
| [20] | Wang B N, Wang X Z, Yang S, et al. Research progress on catalysts for organic sulfur hydrolysis: review of activity and stability[J]. Chinese Journal of Chemical Engineering, 2024, 71: 203-216. |
| [21] | 赖君玲, 赖晓晨, 柳叶, 等. 干水和碱性干碱的制备及催化水解COS的研究[J]. 石油化工高等学校学报, 2017, 30(5): 12-16. |
| Lai J L, Lai X C, Liu Y, et al. Preparation of dry water and dry bases for catalytic hydrolysis of carbonyl sulfide[J]. Journal of Petrochemical Universities, 2017, 30(5): 12-16. | |
| [22] | 何贞泉, 田森林, 张秋林, 等. 前驱体对Cu/Al2O3的HCN催化水解性能的影响[J]. 环境工程学报, 2016, 10(9): 5044-5050. |
| He Z Q, Tian S L, Zhang Q L, et al. Influence of precursors on catalytic hydrolysis performance of Cu/Al2O3 catalyst toward HCN[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 5044-5050. | |
| [23] | Yi H H, He D, Tang X L, et al. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide[J]. Fuel, 2012, 97: 337-343. |
| [24] | Li K L, Wang C, Ning P, et al. Surface characterization of metal oxides-supported activated carbon fiber catalysts for simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide[J]. Journal of Environmental Sciences, 2020, 96: 44-54. |
| [25] | Li X, Wang X Q, Wang L L, et al. Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon[J]. Applied Surface Science, 2022, 579: 152189. |
| [26] | 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. |
| Weng S F. Fourier Transform Infrared Spectrum Analysis[M]. 2nd ed. Beijing: Chemical Industry Press, 2010. | |
| [27] | Tanpure S, Ghanwat V, Shinde B, et al. The eggshell waste transformed green and efficient synthesis of K-Ca(OH)2 catalyst for room temperature synthesis of chalcones[J]. Polycyclic Aromatic Compounds, 2022, 42(4): 1322-1340. |
| [28] | 马铭宇, 王超, 李运甲, 等. 高炉煤气中羰基硫水解吸附催化剂的制备及性能研究[J]. 化工学报, 2022, 73(1): 275-283. |
| Ma M Y, Wang C, Li Y J, et al. Preparation and performance study of catalyst for COS hydrolysis and adsorption in blast furnace gas[J]. CIESC Journal, 2022, 73(1): 275-283. | |
| [29] | 刘霜, 齐天勤机, 张永春. KOH改性活性炭及其对微量乙烷的吸附性能[J]. 现代化工, 2019, 39(3): 176-180. |
| Liu S, Qi T Q J, Zhang Y C. KOH modified activated carbon and its adsorption performance to trace ethane[J]. Modern Chemical Industry, 2019, 39(3): 176-180. | |
| [30] | Song X, Li K, Wang C, et al. Regeneration performance and mechanism of modified walnut shell biochar catalyst for low temperature catalytic hydrolysis of organic sulfur[J]. Chemical Engineering Journal, 2017, 330: 727-735. |
| [31] | Wang X, Li Y J, Zhang W, et al. Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor[J]. Process Safety and Environmental Protection, 2020, 134: 83-94. |
| [32] | 元宁, 李嘉, 张晋玲, 等. 煤气化灰渣制备活性炭及其CO2吸附分离研究[J/OL]. 洁净煤技术, . |
| Yuan N, Li J, Zhang J L, et al. Preparation of activated carbon from coal gasification slag and its CO2 adsorption and separation performance[J/OL]. Clean Coal Technology, . | |
| [33] | Yamada T, Okigawa Y, Hasegawa M. Potassium-doped n-type bilayer graphene[J]. Applied Physics Letters, 2018, 112(4): 043105. |
| [34] | Liang J X, Xue Y X, Gu J N, et al. Sustainably recycling spent lithium-ion batteries to prepare magnetically separable cobalt ferrite for catalytic degradation of bisphenol A via peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 427: 127910. |
| [35] | Pan Y K, Chen M Q, Su Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization[J]. Applied Catalysis B: Environmental, 2021, 280: 119444. |
| [36] | 黄俊, 刘羿良, 吴鹏, 等. TiAl基羰基硫水解催化剂的中毒机制与抗氧性能研究[J]. 化工学报, 2022, 73(10): 4461-4471. |
| Huang J, Liu Y L, Wu P, et al. Poisoning mechanism and antioxidant performance of TiAl-based carbonyl sulfur hydrolysis catalyst[J]. CIESC Journal, 2022, 73(10): 4461-4471. | |
| [37] | 王广建, 田爱秀, 陈晓婷, 等. COS水解催化剂及其脱硫机理研究进展[J]. 炼油技术与工程, 2017, 47(9): 37-40. |
| Wang G J, Tian A X, Chen X T, et al. Study on COS hydrolysis catalyst and its desulfurization mechanisms[J]. Petroleum Refinery Engineering, 2017, 47(9): 37-40. | |
| [38] | Wang Y, Zhang G J, Shi X, et al. New insights in the hydrolysis mechanism of carbon disulfide (CS2): a density functional study[J]. Structural Chemistry, 2023, 34(1): 71-82. |
| [1] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [2] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [3] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [4] | Jian PENG, Lukai SHEN, Likun WANG, Lihong XIN, Yong LIU, Gaoling ZHAO, Sainan MA, Gaorong HAN. Preparation of tungstate nanomaterials and research progress in electrochromic field [J]. CIESC Journal, 2025, 76(6): 2451-2468. |
| [5] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [6] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [7] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [8] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [9] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [10] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
| [11] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [12] | Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane [J]. CIESC Journal, 2025, 76(2): 454-465. |
| [13] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
| [14] | Yanhui DAI, Qizhao XIONG, Qiang FANG, Dongxiao YANG, Yi WANG, Yang CHEN, Jinping LI, Libo LI. In situ steam-assisted method for one-step synthesis of hierarchically porous Cu-BTC [J]. CIESC Journal, 2024, 75(9): 3329-3337. |
| [15] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||