CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4838-4849.DOI: 10.11949/0438-1157.20250196
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Huihui QIAN(
), Wenjie WANG(
), Wenyao CHEN, Xinggui ZHOU, Jing ZHANG(
), Xuezhi DUAN(
)
Received:2025-02-28
Revised:2025-05-04
Online:2025-10-23
Published:2025-09-25
Contact:
Jing ZHANG, Xuezhi DUAN
钱慧慧(
), 王文婕(
), 陈文尧, 周兴贵, 张晶(
), 段学志(
)
通讯作者:
张晶,段学志
作者简介:钱慧慧(2000—), 女, 硕士研究生, Y30220137@mail.ecust.edu.cn基金资助:CLC Number:
Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics[J]. CIESC Journal, 2025, 76(9): 4838-4849.
钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | SiO2/Al2O3 | 孔结构性质 | ||
|---|---|---|---|---|
| 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 微孔孔容/(cm3·g-1) | ||
| ZSM-5(25) | 25 | 284.5 | 0.190 | 0.131 |
| ZSM-5(38) | 38 | 333.5 | 0.178 | 0.161 |
| ZSM-5(50) | 50 | 246.3 | 0.134 | 0.123 |
| ZSM-5(70) | 70 | 285.2 | 0.175 | 0.133 |
| Pt-ZSM-5(38) | 38 | 314.3 | 0.171 | 0.149 |
| ZSM-5-B | 40 | 16.3 | 0.066 | 0.002 |
| Pt-ZSM-5-B | 40 | 12.0 | 0.048 | 0.001 |
Table 1 Pore structure parameters of catalysts
| 催化剂 | SiO2/Al2O3 | 孔结构性质 | ||
|---|---|---|---|---|
| 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 微孔孔容/(cm3·g-1) | ||
| ZSM-5(25) | 25 | 284.5 | 0.190 | 0.131 |
| ZSM-5(38) | 38 | 333.5 | 0.178 | 0.161 |
| ZSM-5(50) | 50 | 246.3 | 0.134 | 0.123 |
| ZSM-5(70) | 70 | 285.2 | 0.175 | 0.133 |
| Pt-ZSM-5(38) | 38 | 314.3 | 0.171 | 0.149 |
| ZSM-5-B | 40 | 16.3 | 0.066 | 0.002 |
| Pt-ZSM-5-B | 40 | 12.0 | 0.048 | 0.001 |
| 催化剂 | 酸位数量/(mmol·g-1) | |
|---|---|---|
| 弱酸 | 强酸 | |
| ZSM-5(38) | 0.5 | 0.6 |
| Pt-ZSM-5(38) | 0.6 | 0.9 |
Table 2 The number of acid sites of the catalyst based on NH3-TPD analysis
| 催化剂 | 酸位数量/(mmol·g-1) | |
|---|---|---|
| 弱酸 | 强酸 | |
| ZSM-5(38) | 0.5 | 0.6 |
| Pt-ZSM-5(38) | 0.6 | 0.9 |
Fig.6 The carbon number distribution of cracking products from the model compound on the pore-blocking catalyst and the BTX yield on the conventional catalyst
| [1] | Samuel Pottinger A, Geyer R, Biyani N, et al. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050[J]. Science, 2024, 386(6726): 1168-1173. |
| [2] | Matveev A E. The effect of the concentration of plastic waste on the formation of reaction products of the Ti-PET system[J]. Green Chemical Engineering, 2024, 5(3): 374-382. |
| [3] | Luo Y J, Sun J Y, Li Z. Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst[J]. Green Chemical Engineering, 2024, 5(2): 257-265. |
| [4] | Zhao Z Y, Bai J Y, Tao H, et al. Ionic liquids with multiple hydrogen bonds as metal-free catalysts for efficient hydrolysis of PET under relatively mild conditions[J]. Green Chemical Engineering, . |
| [5] | Ahamed A, Veksha A, Yin K, et al. Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2020, 390: 121449. |
| [6] | Zhang S, Xia B Q, Qu Y, et al. Photocatalytic production of ethylene and propionic acid from plastic waste by titania-supported atomically dispersed Pd species[J]. Science Advances, 2023, 9(49): eadk2407. |
| [7] | Cui Y L, Zhang Y N, Cui L F, et al. Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production[J]. Journal of Cleaner Production, 2023, 411: 137303. |
| [8] | Qu B Y, Wang T, Ji X R, et al. Effect of reduction temperatures of Ni-modified zeolites on the product distribution, catalyst deactivation, and reaction mechanism during polypropylene pyrolysis[J]. Fuel, 2025, 384: 133947. |
| [9] | Martín A J, Mondelli C, Jaydev S D, et al. Catalytic processing of plastic waste on the rise[J]. Chem, 2021, 7(6): 1487-1533. |
| [10] | Zhang W, Kim S, Wahl L, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation[J]. Science, 2023, 379(6634): 807-811. |
| [11] | Wang J, Jiang J C, Wang X B, et al. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis[J]. Journal of Hazardous Materials, 2020, 386: 121970. |
| [12] | Settle A E, Berstis L, Rorrer N A, et al. Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds[J]. Green Chemistry, 2017, 19(15): 3468-3492. |
| [13] | Li H Q, Aguirre-Villegas H A, Allen R D, et al. Expanding plastics recycling technologies: chemical aspects, technology status and challenges[J]. Green Chemistry, 2022, 24(23): 8899-9002. |
| [14] | Zhang F, Zeng M H, Yappert R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
| [15] | Dong Z W, Chen W J, Xu K Q, et al. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review[J]. ACS Catalysis, 2022, 12(24): 14882-14901. |
| [16] | Qian K Z, Tian W M, Yang Z X, et al. Unraveling the role of mesoporosity and acidity of hierarchical aggregated HZSM-5 in HDPE vapor catalytic cracking for value-added hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2024, 63(38): 16324-16334. |
| [17] | Yuan H R, Li C Y, Shan R, et al. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis[J]. Fuel Processing Technology, 2022, 238: 107531. |
| [18] | Abbas-Abadi M S, Ureel Y, Eschenbacher A, et al. Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: towards full recyclability[J]. Progress in Energy and Combustion Science, 2023, 96: 101046. |
| [19] | Wang Y, Zhang Y H, Fan H C, et al. Elucidating the structure-performance relationship of typical commercial zeolites in catalytic cracking of low-density polyethylene[J]. Catalysis Today, 2022, 405: 135-143. |
| [20] | Santos B P S, Almeida D, de Fatima V Marques M, et al. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts[J]. Fuel, 2018, 215: 515-521. |
| [21] | Yao D D, Yang H P, Chen H P, et al. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene[J]. Applied Catalysis B: Environmental, 2018, 227: 477-487. |
| [22] | Yaripour F, Shariatinia Z, Sahebdelfar S, et al. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous and Mesoporous Materials, 2015, 203: 41-53. |
| [23] | Bozkurt O D, Toraman H E. Conversion of polypropylene into light hydrocarbons and aromatics by metal exchanged zeolite catalysts[J]. Langmuir, 2024, 40(18): 9636-9650. |
| [24] | Qian K Z, Tian W M, Yan S W, et al. Aromatization of HDPE and PP over Ga-promoted zeolite: effects of pretreatment and zeolite type[J]. Fuel, 2024, 357: 129781. |
| [25] | Pyo S, Kim Y M, Park Y, et al. Catalytic pyrolysis of polypropylene over Ga loaded HZSM-5[J]. Journal of Industrial Engineering Chemistry, 2021, 103: 136-141. |
| [26] | Yousefi M R, Rahimi S, Rostamizadeh M. Effective high silica ZSM-5 nanocatalyst including Fe and B promoters for production of high value petrochemicals in plastic upgrading process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105108. |
| [27] | Du J J, Zeng L, Yan T, et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons[J]. Nature Nanotechnology, 2023, 18(7): 772-779. |
| [28] | Wang W J, Yao C, Ge X H, et al. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation[J]. Journal of Materials Chemistry A, 2023, 11(27): 14933-14940. |
| [29] | Li Y R, Cao Y Q, Ge X H, et al. Pt-O4 moiety induced electron localization toward In2O-triggered acetylene semi-hydrogenation [J]. Journal of Catalysis, 2022, 407: 290-299. |
| [30] | Zhang Y T, Li A M, Zhang Y S, et al. In-situ catalytic pyrolysis of polyethylene to co-produce BTX aromatics and H2 by Ni/ZSM-5 in the rotary reactor with solid heat carriers[J]. Fuel, 2024, 371: 131950. |
| [31] | Feng X, Duan X Z, Qian G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2 [J]. Applied Catalysis B: Environmental, 2014, 150: 396-401. |
| [32] | Qian K Z, Tian W M, Yin L J, et al. Aromatic production from high-density polyethylene over zinc promoted HZSM-5[J]. Applied Catalysis B: Environmental, 2023, 339: 123159. |
| [33] | Yue X, Wang S, Li D F, et al. Experimental and numerical investigations on the adsorption/desorption performance of low-concentration VOCs over H-ZSM-5 with different SiO2/Al2O3 ratios[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 5408-5419. |
| [34] | Caiola A, Robinson B, Bai X W, et al. Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11421-11431. |
| [35] | Song S F, Wu Y J, Ge S S, et al. A facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides[J]. ACS Catalysis, 2019, 9(7): 6177-6187. |
| [36] | Xu L Y, Wen C H, Luo X H, et al. Regulating the synergy of sulfate and Pt species in Pt/ZSM-5 for propane complete oxidation[J]. Applied Catalysis B: Environment and Energy, 2024, 354: 124135. |
| [37] | Gil B, Zones S I, Hwang S J, et al. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study[J]. The Journal of Physical Chemistry C, 2008, 112(8): 2997-3007. |
| [38] | Sang S Y, Chang F X, Liu Z M, et al. Difference of ZSM-5 zeolites synthesized with various templates[J]. Catalysis Today, 2004, 93: 729-734. |
| [39] | Lim B, Jiang M J, Camargo P H C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305. |
| [40] | Song Y Q, Zhu X X, Xie S J, et al. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts[J]. Catalysis Letters, 2004, 97(1): 31-36. |
| [41] | Negelein D L, Lin R, White R L. Effects of catalyst acidity and HZSM-5 channel volume on polypropylene cracking[J]. Journal of Applied Polymer Science, 1998, 67(2): 341-348. |
| [42] | Sun B Y, Xu H F, Li T, et al. Hydrogen-free upcycling of polyethylene waste to methylated aromatics over Ni/ZSM-5 under mild conditions[J]. Journal of Hazardous Materials, 2025, 482: 136564. |
| [43] | Boronat M, Corma A. Are carbenium and carbonium ions reaction intermediates in zeolite-catalyzed reactions?[J]. Applied Catalysis A: General, 2008, 336(1): 2-10. |
| [44] | Hou X, Ni N, Wang Y, et al. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 270-280. |
| [45] | Corma A, Orchillés A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35: 21-30. |
| [46] | Luda M P, Dall'Anese R. On the microstructure of polypropylenes by pyrolysis GC-MS[J]. Polymer Degradation and Stability, 2014, 110: 35-43. |
| [47] | Hassibi N, Quiring Y, Carré V, et al. Analysis and control of products obtained from pyrolysis of polypropylene using a reflux semi-batch reactor and GC-MS/FID and FT-ICR MS[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105826. |
| [48] | Park C, Lee J. Pyrolysis of polypropylene for production of fuel-range products: effect of molecular weight of polypropylene[J]. International Journal of Energy Research, 2021, 45(9): 13088-13097. |
| [49] | Das P, Tiwari P. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel[J]. Waste Management, 2018, 79: 615-624. |
| [50] | Duan J D, Chen W, Wang C T, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
| [1] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [2] | Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production [J]. CIESC Journal, 2025, 76(9): 4882-4892. |
| [3] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| [4] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [5] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [6] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [7] | Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene [J]. CIESC Journal, 2025, 76(8): 4071-4080. |
| [8] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [9] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [10] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [11] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [12] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [13] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [14] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [15] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||