CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4259-4272.DOI: 10.11949/0438-1157.20250178

• Energy and environmental engineering • Previous Articles     Next Articles

Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage

Zheng GAO(), Hui WANG, Zhiguo QU()   

  1. Key Laboratory of Thermo-Fluid Science and Engineering of MDE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2025-02-25 Revised:2025-05-15 Online:2025-09-17 Published:2025-08-25
  • Contact: Zhiguo QU

数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢

高正(), 汪辉, 屈治国()   

  1. 西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室,陕西 西安 710049
  • 通讯作者: 屈治国
  • 作者简介:高正(1994—),男,博士研究生,gaozheng@stu.xjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFB4005404);国家自然科学基金项目(52176088);跨域飞行交叉技术实验室项目(2024-KF01004)

Abstract:

Hydrogen storage is a core issue that hinders the development of the hydrogen energy industry, and improving hydrogen storage density is a key technical difficulty. Metal-organic frameworks (MOFs) exhibit excellent hydrogen storage density, and have become one of the most promising energy storage materials. However, conventional computational approaches, including traditional molecular simulations and high-throughput screening methods, encounter significant limitations when applied to MOF hydrogen storage research. These methods are particularly constrained by their excessive computational time requirements and substantial resource consumption, which hinder efficient material discovery and optimization. To address these challenges, this study developed a data-driven high-throughput screening strategy for the rapid prediction of hydrogen storage performance in anion-templated metal-organic frameworks (AP-MOFs). The proposed method achieved exceptional predictive accuracy, with R2 values exceeding 0.99 for both the training and test sets, and required only 63 s of computation time. Through this approach, 20 AP-MOFs with a hydrogen storage density exceeding 5.5%(mass) at 77 K and 5 MPa were identified, surpassing the hydrogen storage target set by the United States Department of Energy. Among these, the ALFFIVE_2_Fe structure, which is potentially synthesizable, exhibited a remarkable hydrogen storage density of 9.75%(mass) under the same conditions, along with a deliverable hydrogen storage density of 3.05%(mass). The study also revealed that the volumetric porosity has the greatest impact on hydrogen storage performance, followed by gravimetric surface area, density and porosity. These findings provide theoretical insights for the future application of AP-MOFs in hydrogen storage technologies.

Key words: metal-organic frameworks, high-throughput screening, machine learning, hydrogen storage, molecular simulation

摘要:

氢存储是掣肘氢能产业发展的核心问题,提高储氢密度是关键技术难点。金属有机框架表现出优异的储氢密度,成为最具潜力的储氢材料之一,然而传统的分子模拟技术和常规的高通量筛选方法研究金属有机框架储氢,面临计算耗时长且计算资源消耗大的问题。本文构建了一种数据驱动辅助高通量筛选策略,用于快速预测阴离子柱撑金属有机框架储氢性能,其在训练集和测试集上的R2值均超过了0.99,且耗时仅为63 s。筛选出20个金属有机框架,在77 K、5 MPa下的质量储氢密度均超过了美国能源部设定的储氢目标5.5%(质量)。潜在可能合成的ALFFIVE_2_Fe结构在77 K、5 MPa下,质量储氢密度达到9.75%(质量),可交付质量储氢密度达到了3.05%(质量)。通过特征值贡献度发现孔体积对储氢容量影响最大,依次是质量表面积、密度以及孔隙率。研究结果可为阴离子柱撑金属有机框架在储氢应用方面提供一定的理论参考。

关键词: 金属有机框架, 高通量筛选, 机器学习, 储氢, 分子模拟

CLC Number: