CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 276-282.DOI: 10.11949/0438-1157.20240342
• Energy and environmental engineering • Previous Articles Next Articles
Angran ZHAO1(), Yongqiang HAN1, Zhipeng WANG1, Pengfei LI2, Yawei XU1, Huiling TONG1(
)
Received:
2024-03-26
Revised:
2024-06-25
Online:
2024-12-17
Published:
2024-12-25
Contact:
Huiling TONG
赵昂然1(), 韩永强1, 王志鹏1, 李鹏飞2, 许亚伟1, 佟会玲1(
)
通讯作者:
佟会玲
作者简介:
赵昂然(1996—),男,博士研究生,助理工程师,zar1996@qq.com
基金资助:
CLC Number:
Angran ZHAO, Yongqiang HAN, Zhipeng WANG, Pengfei LI, Yawei XU, Huiling TONG. Experimental study on simultaneous desulfurization and denitrification of red mud at low temperature[J]. CIESC Journal, 2024, 75(S1): 276-282.
赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282.
元素 | 质量分数/% |
---|---|
Al | 1.705 |
Ca | 19.58 |
Fe | 7.642 |
K | 0.139 |
Mg | 0.5679 |
Na | 0.8436 |
Ti | 2.299 |
Table 1 The composition of red mud by ICP
元素 | 质量分数/% |
---|---|
Al | 1.705 |
Ca | 19.58 |
Fe | 7.642 |
K | 0.139 |
Mg | 0.5679 |
Na | 0.8436 |
Ti | 2.299 |
参数 | 数值 |
---|---|
pH | 11.19 |
电导率/(μS/cm) | 1279 |
TDS/(mg/L) | 639.2 |
比表面积/(m2/g) | 24.386 |
平均孔容/(cm3/g) | 0.1077 |
平均孔径/Å | 176.59 |
平均粒径/μm | 15.885 |
Table 2 Physical properties of red mud
参数 | 数值 |
---|---|
pH | 11.19 |
电导率/(μS/cm) | 1279 |
TDS/(mg/L) | 639.2 |
比表面积/(m2/g) | 24.386 |
平均孔容/(cm3/g) | 0.1077 |
平均孔径/Å | 176.59 |
平均粒径/μm | 15.885 |
物质 | 平均粒径/μm | 比表面积/(m2/g) |
---|---|---|
石英砂 | 360 | — |
Ca(OH)2 | 3.2 | 6.5 |
Table 3 Physical properties of Ca(OH)2 and quartz sand[23]
物质 | 平均粒径/μm | 比表面积/(m2/g) |
---|---|---|
石英砂 | 360 | — |
Ca(OH)2 | 3.2 | 6.5 |
1 | 郭沛宇, 张喜刚. 1000万吨的突破——2023年我国赤泥绿色利用取得重大进展[N]. 中国有色金属报, 2024-01-06(1). |
Guo P Y, Zhang X G. Breakthrough of 10 million tons: Significant progress in green utilization of red mud in China in 2023[N]. China Nonferrous Metals News, 2024-01-06(1). | |
2 | 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. |
Li B, Zhang B H, Ning P, et al. Present status and prospect of red mud resource utilization and safety treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 714-723. | |
3 | Power G, Gräfe M, Klauber C. Bauxite residue issues(Ⅰ): Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. |
4 | Klauber C, Gräfe M, Power G. Bauxite residue issues(Ⅱ): Options for residue utilization[J]. Hydrometallurgy, 2011, 108(1/2): 11-32. |
5 | Gräfe M, Power G, Klauber C. Bauxite residue issues(Ⅲ): Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108(1/2): 60-79. |
6 | Gräfe M, Klauber C. Bauxite residue issues(Ⅳ): Old obstacles and new pathways for in situ residue bioremediation[J]. Hydrometallurgy, 2011, 108(1/2): 46-59. |
7 | 胡明慧, 郄志鹏, 张新翰, 等. 碳中和背景下的赤泥综合利用现状[J]. 有色金属(冶炼部分), 2024(3): 69-75. |
Hu M H, Qie Z P, Zhang X H, et al. Status of comprehensive utilization of red mud in the context of carbon neutrality[J]. Nonferrous Metals (Extractive Metallurgy), 2024(3): 69-75. | |
8 | 杨慧, 房辉, 程志远, 等. 赤泥资源化综合利用研究进展[J]. 中国资源综合利用, 2023, 41(6): 109-115. |
Yang H, Fang H, Cheng Z Y, et al. Research progress on comprehensive resource utilization of red mud[J]. China Resources Comprehensive Utilization, 2023, 41(6): 109-115. | |
9 | 耿超, 郭士会, 刘志国, 等. 赤泥资源化综合利用现状及展望[J]. 中国有色冶金, 2022, 51(5): 37-45. |
Geng C, Guo S H, Liu Z G, et al. Current situation and prospect of red mud resource comprehensive utilization[J]. China Nonferrous Metallurgy, 2022, 51(5): 37-45. | |
10 | 熊浩, 张涣清, 杜禹艽, 等. 赤泥的资源化利用研究进展[J]. 中国井矿盐, 2023, 54(3): 24-26. |
Xiong H, Zhang H Q, Du Y J, et al. Reviews of research on the use of red mud as a resource[J]. China Well and Rock Salt, 2023, 54(3): 24-26. | |
11 | 陈吉忠, 马幸, 梁婉. 赤泥资源化利用最新研究进展及展望[J]. 中国资源综合利用, 2023, 41(3): 105-111. |
Chen J Z, Ma X, Liang W. Latest research progress and prospect of red mud resource utilization[J]. China Resources Comprehensive Utilization, 2023, 41(3): 105-111. | |
12 | 冉浩学, 谢名淇, 朱燕, 等. 赤泥在水、土、气环境治理中的应用研究进展[J]. 矿产综合利用, 2022(2): 167-176. |
Ran H X, Xie M Q, Zhu Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 167-176. | |
13 | 南相莉, 张廷安, 吴易全, 等. 拜耳赤泥吸收低浓度二氧化硫的研究[J]. 东北大学学报(自然科学版), 2010, 31(7): 986-989. |
Nan X L, Zhang T A, Wu Y Q, et al. A study on absorption of low-concentration SO2 by Bayer red mud[J]. Journal of Northeastern University (Natural Science), 2010, 31(7): 986-989. | |
14 | 左晓琳. 拜耳法赤泥脱硫特性研究[D]. 昆明: 昆明理工大学, 2017. |
Zuo X L. Study on desulfurization performance of Bayer red mud[D]. Kunming: Kunming University of Science and Technology, 2017. | |
15 | 吴惊坤. 改性赤泥催化剂制备及其性能优化[D]. 济南: 山东大学, 2017. |
Wu J K. Preparation and optimization of modified red mud-based catalysts for selective catalytic reduction on NO x with NH3 [D]. Jinan: Shandong University, 2017. | |
16 | 李鹏飞. 反应条件对钙基吸收剂脱除NO x /SO2效果影响的实验研究[D]. 北京: 清华大学, 2009. |
Li P F. Experimental studies on the effects of reaction conditions on removal of NO x and SO2 by calcium sorbent[D]. Beijing: Tsinghua University, 2009. | |
17 | Chen G Q, Gao J H, Gao J M, et al. Simultaneous removal of SO2 and NO x by calcium hydroxide at low temperature: effect of SO2 absorption on NO2 removal[J]. Industrial & Engineering Chemistry Research, 2010, 49(23): 12140-12147. |
18 | Sakai M, Su C L, Sasaoka E. Simultaneous removal of SO x and NO x using slaked lime at low temperature[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5029-5033. |
19 | Li B, Wu H, Liu X L, et al. Simultaneous removal of SO2 and NO using a novel method with red mud as absorbent combined with O3 oxidation[J]. Journal of Hazardous Materials, 2020, 392: 122270. |
20 | 孙详彧. 赤泥与高矿化度矿井废水在烟气脱硫脱硝中应用的研究[D]. 烟台: 烟台大学, 2016. |
Sun X Y. Study on the application of red mud and highly mineralized mine wastewater in flue gas desulfurization and denitrification[D]. Yantai: Yantai University, 2016. | |
21 | Ren J, Chen J, Guo W, et al. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process[J]. Journal of Central South University, 2019, 26(2): 373-382. |
22 | 李建伟. 烧结法赤泥脱碱及碱回收工艺研究[D]. 郑州: 郑州大学, 2012. |
Li J W. The research on technology of red mud dealkalization and alkali recovery[D]. Zhengzhou: Zhengzhou University, 2012. | |
23 | 张晓闻. 常温钙基同时脱硫脱硝机理[D]. 北京: 清华大学, 2008. |
Zhang X W. Kinetics of simultaneous desulfurization and denitration by calcium based absorbent at low temperature[D]. Beijing: Tsinghua University, 2008. | |
24 | Bausach M, Pera-Titus M, Fite C, et al. Water-induced rearrangement of Ca(OH)2 (0001) surfaces reacted with SO2 [J]. AIChE Journal, 2006, 52(8): 2876-2886. |
25 | Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces[J]. Chemical Communications, 2013, 49(30): 3071-3094. |
26 | 李平, 赵越, 卢冠忠, 等. SO2对NO催化氧化过程的影响(Ⅱ)——载体γ-Al2O3与SO2的相互作用[J]. 高等学校化学学报, 2001, 22(12): 2072-2076. |
Li P, Zhao Y, Lu G Z, et al. Effect of SO2 on NO catalytic oxidation(Ⅱ): Interaction betweenγ-Al2O3 support and SO2 [J]. Chemical Research In Chinese Universities, 2001, 22(12): 2072-2076. | |
27 | 李平. SO2对负载型催化剂上NO氧化过程的影响[D]. 上海: 华东理工大学, 2003. |
Li P. Effect of SO2 on oxidation of NO on supported catalyst[D]. Shanghai: East China University of Science and Technology, 2003. | |
28 | de Wilde J, Marin G B. Investigation of simultaneous adsorption of SO2 and NO x on Na-γ-alumina with transient techniques[J]. Catalysis Today, 2000, 62(4): 319-328. |
29 | Zhang X Y, Zhuang G S, Chen J M, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles[J]. The Journal of Physical Chemistry. B, 2006, 110(25): 12588-12596. |
[1] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
[2] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
[3] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[4] | Wenfang GAO, Han CUI, Yiran SUN, Jiaqing PENG, Rui ZHU, Ran XIA, Xinyu ZHANG, Jiaqi LI, Xueliang WANG, Zhi SUN, Longyi LYU. A critical review on environmental impact assessment of typical metal production processes [J]. CIESC Journal, 2024, 75(9): 3056-3073. |
[5] | Xiaoyuan ZHENG, Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU. Phosphorus transformation during subcritical hydrothermal conversion of sewage sludge [J]. CIESC Journal, 2024, 75(8): 2970-2982. |
[6] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[7] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[8] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[9] | Feifan ZHAO, Jiamei ZHU, Jie KANG, Liang TAN, Jingyu DUAN. Absorption characteristics and mechanism of VOCs by tributyl(propyl)phosphonium ionic liquid [J]. CIESC Journal, 2024, 75(10): 3669-3680. |
[10] | Hongyu LI, Xiangkun LIU, Yao SHI, Yueqiang CAO, Gang QIAN, Xuezhi DUAN. Numerical simulation of particle-resolved fixed-bed reactor for selective acetylene hydrogenation process [J]. CIESC Journal, 2024, 75(10): 3610-3622. |
[11] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[12] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[13] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[14] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[15] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||