CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6018-6026.DOI: 10.11949/0438-1157.20250262
• Energy and environmental engineering • Previous Articles
Received:2025-03-17
Revised:2025-06-25
Online:2025-12-19
Published:2025-11-25
Contact:
Jinjia WEI
通讯作者:
魏进家
作者简介:刘辉(1998—),男,博士研究生,lh3041594963@stu.xjtu.edu.cn
基金资助:CLC Number:
Hui LIU, Jinjia WEI. Mn/Al modified calcium-based energy storage materials with high stability[J]. CIESC Journal, 2025, 76(11): 6018-6026.
刘辉, 魏进家. Mn/Al改性的高稳定性钙基储能材料[J]. 化工学报, 2025, 76(11): 6018-6026.
Add to citation manager EndNote|Ris|BibTeX
| 掺杂钙基材料 | 碳酸化温度/℃ | 碳酸化时间/min | 首次储能密度/(kJ/kg) | 循环次数/衰减率 | 文献 |
|---|---|---|---|---|---|
| CaCO3/Fe,Mn | 700 | 10 | 1500 | 60/3.3% | [ |
| CaO/Al,Mn,Fe,Li | 725 | 20 | 1746 | 60/4.26% | [ |
| CaCO3/Ti,Al,Mg | 750 | 10 | 1157 | 100/7% | [ |
| CaO/Mn,Mg | 800 | 10 | 1604 | 100/6.23% | [ |
| CaO/Al | 850 | 10 | 1496 | 100/32% | [ |
| CaO/Mn,Al | 800 | 10 | 1245.7 | 1000/23.2% | this study |
Table 1 Comparison of various modified calcium-based materials for energy storage
| 掺杂钙基材料 | 碳酸化温度/℃ | 碳酸化时间/min | 首次储能密度/(kJ/kg) | 循环次数/衰减率 | 文献 |
|---|---|---|---|---|---|
| CaCO3/Fe,Mn | 700 | 10 | 1500 | 60/3.3% | [ |
| CaO/Al,Mn,Fe,Li | 725 | 20 | 1746 | 60/4.26% | [ |
| CaCO3/Ti,Al,Mg | 750 | 10 | 1157 | 100/7% | [ |
| CaO/Mn,Mg | 800 | 10 | 1604 | 100/6.23% | [ |
| CaO/Al | 850 | 10 | 1496 | 100/32% | [ |
| CaO/Mn,Al | 800 | 10 | 1245.7 | 1000/23.2% | this study |
Fig.7 SEM images and corresponding EDS images of various samples: (a) fresh Ca100Al10-Ac; (b) 100th cycled Ca100Al10-Ac; (c) EDS images of fresh Ca100Al10-Ac; (d) fresh Ca100Mn15-Ac; (e) 100th cycled Ca100Mn15-Ac; (f) EDS images of fresh Ca100Mn15-Ac; (g),(j) fresh Ca100Mn15Al10-Ac; (h),(k) Ca100Mn15Al10-Ac after 1000 cycles; (i) EDS images of fresh Ca100Mn15Al10-Ac
| [1] | Leonard M D, Michaelides E E, Michaelides D N. Energy storage needs for the substitution of fossil fuel power plants with renewables[J]. Renewable Energy, 2020, 145: 951-962. |
| [2] | Lv J Q, Xie J F, Mohamed A G A, et al. Solar utilization beyond photosynthesis[J]. Nature Reviews Chemistry, 2023, 7(2): 91-105. |
| [3] | Wang G, Zhang Z, Lin J Q. Multi-energy complementary power systems based on solar energy: a review[J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114464. |
| [4] | Romero M, Steinfeld A. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science, 2012, 5(11): 9234-9245. |
| [5] | He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power[J]. Energy, 2020, 198: 117373. |
| [6] | Raganati F, Chirone R, Ammendola P. Calcium-looping for thermochemical energy storage in concentrating solar power applications: evaluation of the effect of acoustic perturbation on the fluidized bed carbonation[J]. Chemical Engineering Journal, 2020, 392: 123658. |
| [7] | 凌祥, 宋丹阳, 陈晓轶, 等. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(4): 1777-1796. |
| Ling X, Song D Y, Chen X Y, et al. Progress in equipment and systems for calcium-based thermochemical energy storage system[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1777-1796. | |
| [8] | Tian X K, Guo S J, Lv X J, et al. Progress in multiscale research on calcium-looping for thermochemical energy storage: from materials to systems[J]. Progress in Energy and Combustion Science, 2025, 106: 101194. |
| [9] | Ortiz C, Chacartegui R, Valverde J M, et al. Power cycles integration in concentrated solar power plants with energy storage based on calcium looping[J]. Energy Conversion and Management, 2017, 149: 815-829. |
| [10] | Teng L, Xuan Y M, Da Y, et al. Modified Ca-looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845. |
| [11] | 郑玉圆, 葛志伟, 韩翔宇, 等. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
| Zheng Y Y, Ge Z W, Han X Y, et al. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials[J]. CIESC Journal, 2023, 74(8): 3171-3192. | |
| [12] | Tian X K, Lin S C, Yan J, et al. Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process[J]. Chemical Engineering Journal, 2022, 428: 131229. |
| [13] | Wang J F, Xiong W, Ding Z X, et al. Enhancing the stability of CaO-based looping materials in thermochemical energy storage by codoping Y and Mg[J]. ACS Applied Energy Materials, 2024, 7(24): 12165-12173. |
| [14] | Wang K, Gu F, Clough P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: 124163. |
| [15] | Huang X K, Ma X T, Li J, et al. Enhancement effects of hydrolysable/soluble Al-type dopants on the efficiency of CaO/CaCO3 thermochemical energy storage[J]. Chemical Engineering Journal, 2024, 490: 151555. |
| [16] | Han R, Gao J H, Wei S Y, et al. Development of dense Ca-based, Al-stabilized composites with high volumetric energy density for thermochemical energy storage of concentrated solar power[J]. Energy Conversion and Management, 2020, 221: 113201. |
| [17] | Hu Y C, He W Z, Cao J X, et al. Decorating CaO with dark Ca2MnO4 for direct solar thermal conversion and stable thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 248: 111977. |
| [18] | Guo H X, Kou X C, Zhao Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246. |
| [19] | Chen X B, Tang Y T, Ke C C, et al. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases[J]. Chinese Journal of Chemical Engineering, 2022, 43: 40-49. |
| [20] | Jiang T, Zhang H, Zhao Y J, et al. Kilogram-scale production and pelletization of Al-promoted CaO-based sorbent for CO2 capture[J]. Fuel, 2021, 301: 121049. |
| [21] | Sun H, Li Y J, Yan X Y, et al. Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure[J]. Applied Energy, 2020, 263: 114650. |
| [22] | Li C L, Li Y J, Zhang C X, et al. CaO/CaCO3 thermochemical energy storage performance of high-alumina granule stabilized papermaking soda residue[J]. Fuel Processing Technology, 2022, 237: 107444. |
| [23] | Gao C Y, Zhang Y, Liu X L, et al. A dual modification method to prepare carbide slag into highly active CaO-based solar energy storage materials[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 769-779. |
| [24] | Kim S M, Kierzkowska A M, Broda M, et al. Sol-gel synthesis of MgAl2O4-stabilized CaO for CO2 capture[J]. Energy Procedia, 2017, 114: 220-229. |
| [25] | Luo T, Luo C, Shi Z W, et al. Optimization of sol-gel combustion synthesis for calcium looping CO2 sorbents (part Ⅰ): Effects of sol-gel preparation and combustion conditions[J]. Separation and Purification Technology, 2022, 292: 121081. |
| [26] | Song C, Liu X L, Zheng H B, et al. Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability[J]. Chemical Engineering Journal, 2021, 406: 126282. |
| [27] | Angeli S D, Martavaltzi C S, Lemonidou A A. Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: parametric study of sorption[J]. Fuel, 2014, 127: 62-69. |
| [28] | Chen H C, Zhang P P, Duan Y F, et al. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400. |
| [29] | Liu X L, Yuan C J, Zheng H B, et al. Synergy of Li2CO3 promoters and Al-Mn-Fe stabilizers in CaCO3 pellets enables efficient direct solar-driven thermochemical energy storage[J]. Materials Today Energy, 2022, 30: 101174. |
| [30] | Carrillo A J, González-Aguilar J, Romero M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
| [31] | Tian X K, Lin S C, Yan J, et al. Improved durability in thermochemical energy storage using Ti/Al/Mg co-doped calcium-based composites with hierarchical meso/micro pore structures[J]. Chemical Engineering Journal, 2022, 450: 138142. |
| [32] | Liu H, Li Y Z, Wei J J. High performance Mn/Mg co-modified calcium-based material via EDTA chelating agent for effective solar energy storage[J]. Chemical Engineering Journal, 2024, 480: 147892. |
| [33] | Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy & Fuels, 2012, 26(5): 3103-3109. |
| [34] | Zhou Z M, Qi Y, Xie M M, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180. |
| [35] | Torma A J, Li W B, Zhang H, et al. Interstitial nature of Mn2+ doping in 2D perovskites[J]. ACS Nano, 2021, 15(12): 20550-20561. |
| [1] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [2] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [3] | Xin XIAO, Geng YANG, Yunfeng WANG. Simulation of solar heat pump system integration of cascade latent heat thermal energy storage based on TRNSYS [J]. CIESC Journal, 2025, 76(S1): 393-400. |
| [4] | Guorui HUANG, Yao ZHAO, Mingxi XIE, Erjian CHEN, Yanjun DAI. Experimental study on a novel waste heat recovery system based on desiccant coated exchanger in data center [J]. CIESC Journal, 2025, 76(S1): 409-417. |
| [5] | Hui LIU, Jia WANG, Jing ZHAO, Chuanchang LI, Youfu LYU. Research on heat generation behavior and capacity attenuation of large capacity energy storage battery [J]. CIESC Journal, 2025, 76(9): 4903-4912. |
| [6] | Qidong ZHANG, Liqiang AI, Yuan MA, Shengbao WU, Lei WANG, Yanzhong LI. Research on two-phase flow and heat transfer characteristics in precooling process of low-temperature pipelines based on one-dimensional drift-flux model [J]. CIESC Journal, 2025, 76(8): 3842-3852. |
| [7] | Songwei SHI, Cheng ZHAO, Shuai LIU, Yuxuan YING, Mi YAN. Removal of biogas H2S using iron-rich fly ash coupled with Fe-Zn/Al2O3 [J]. CIESC Journal, 2025, 76(8): 4239-4247. |
| [8] | Yuhong TIAN, Zhuangzhuang DU, Huifang XU, Ziqiang ZHU, Yucong WANG. Preparation of ZIF-8 based porous liquid and its SO2 adsorption performance [J]. CIESC Journal, 2025, 76(8): 4284-4296. |
| [9] | Zeming DONG, Juwei LOU, Nan WANG, Liangqi CHEN, Jiangfeng WANG, Pan ZHAO. Research on thermodynamic properties of supercritical compressed carbon dioxide energy storage system with waste heat recovery [J]. CIESC Journal, 2025, 76(7): 3477-3486. |
| [10] | Wenjia LIU, Ruxue DU, Siqi WANG, Tingxian LI. Research status and application of functional phase change materials for electro-thermal conversion in thermal energy storage [J]. CIESC Journal, 2025, 76(7): 3185-3196. |
| [11] | Yufeng TANG, Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA. Preparation of carbon based porous adsorbent with ultra high specific surface area and its Kr gas storage performance [J]. CIESC Journal, 2025, 76(7): 3339-3349. |
| [12] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [13] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [14] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [15] | Haojie YANG, Chunyu LIU, Xuejiao LI, Liang YU, Xingcai LYU. Study of stability limits and emission characteristics in premixed ammonia-methane-air swirling flames in low swirl configurations [J]. CIESC Journal, 2025, 76(6): 3029-3040. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
