CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6008-6017.DOI: 10.11949/0438-1157.20250678
• Surface and interface engineering • Previous Articles
Bin ZHAO1(
), Jing LIAO1, Yanjie REN2(
), Junchen ZHOU1, Yan LI3
Received:2025-06-22
Revised:2025-07-22
Online:2025-12-19
Published:2025-11-25
Contact:
Yanjie REN
通讯作者:
任延杰
作者简介:赵斌(1968—), 男, 博士, 教授, zhaobin@csust.edu.cn
基金资助:CLC Number:
Bin ZHAO, Jing LIAO, Yanjie REN, Junchen ZHOU, Yan LI. Preparation and properties of superhydrophobic aluminum alloy via chemical-electrochemical synergistic etching[J]. CIESC Journal, 2025, 76(11): 6008-6017.
赵斌, 廖静, 任延杰, 周俊臣, 李岩. 化学-电化学协同刻蚀制备超疏水铝合金及其性能研究[J]. 化工学报, 2025, 76(11): 6008-6017.
Add to citation manager EndNote|Ris|BibTeX
Fig.8 Potentiodynamic polarization curves of the as-received aluminum alloy substrate and the superhydrophobic aluminium alloy surface in 3.5%(mass) NaCl aqueous solution
Fig. 10 Mechanical stability of the superhydrophobic aluminum alloy under different conditions: (a) ultrasonic vibration; (b) boiling water; (c) sand impact; (d) linear abrasion
| 材料 | 载荷/kPa | 磨损距离/cm | 落砂质量/g | 测试前接触角/(°) | 测试后接触角/(°) |
|---|---|---|---|---|---|
| 超疏水6061铝合金[ | 1 | 60 | — | 161 | 155 |
| 超疏水5083铝合金[ | 4.9 | 480 | — | 165 | 146 |
| 超疏水2024铝合金[ | 4.9 | 100 | — | 160 | 147 |
| 超疏水锌镀层[ | 3 | 200 | — | 158 | 142 |
| 无氟超疏水涂层[ | — | — | 120 | 156 | 154 |
| 超疏水聚合物涂层 [ | — | — | 30 | 176 | 148 |
| 本文中的超疏水6061铝合金 | 4.9 | 400 | — | 165 | 162 |
| — | — | 200 | 165 | 152 |
Table 1 Comparison of linear wear resistance and sand drop wear resistance of superhydrophobic aluminum alloys prepared in this paper with those in literatures
| 材料 | 载荷/kPa | 磨损距离/cm | 落砂质量/g | 测试前接触角/(°) | 测试后接触角/(°) |
|---|---|---|---|---|---|
| 超疏水6061铝合金[ | 1 | 60 | — | 161 | 155 |
| 超疏水5083铝合金[ | 4.9 | 480 | — | 165 | 146 |
| 超疏水2024铝合金[ | 4.9 | 100 | — | 160 | 147 |
| 超疏水锌镀层[ | 3 | 200 | — | 158 | 142 |
| 无氟超疏水涂层[ | — | — | 120 | 156 | 154 |
| 超疏水聚合物涂层 [ | — | — | 30 | 176 | 148 |
| 本文中的超疏水6061铝合金 | 4.9 | 400 | — | 165 | 162 |
| — | — | 200 | 165 | 152 |
| [1] | Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 2017, 405: 465-475. |
| [2] | Feng L B, Yan Z N, Qiang X H, et al. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior[J]. Applied Physics A, 2016, 122(3): 165. |
| [3] | 张跃忠. 金属特殊润湿性表面制备及性能研究[M]. 北京:化学工业出版社, 2021. |
| Zhang Y Z. Study on Preparation and Application of Metal Surface with Special Wettability[M]. Beijing: Chemical Industry Press, 2021. | |
| [4] | Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14): 5922-5946. |
| [5] | Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
| [6] | Xiang T F, Han Y, Guo Z Q, et al. Fabrication of inherent anticorrosion superhydrophobic surfaces on metals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5598-5606. |
| [7] | Cho E C, Chang-Jian C W, Chen H C, et al. Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion[J]. Chemical Engineering Journal, 2017, 314: 347-357. |
| [8] | Liu Y C, Huang W J, Wu S H, et al. Excellent superhydrophobic surface and anti-corrosion performance by nanostructure of discotic columnar liquid crystals[J]. Corrosion Science, 2018, 138: 1-7. |
| [9] | Wu D H, Guo Z G. Robust and muti-repaired superhydrophobic surfaces via one-step method on copper and aluminum alloys[J]. Materials Letters, 2018, 213: 290-293. |
| [10] | Dong B B, Wang F H, Abadikhah H, et al. Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42801-42807. |
| [11] | Gose J W, Golovin K, Boban M, et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow[J]. Journal of Fluid Mechanics, 2018, 845: 560-580. |
| [12] | Zhou X, Yu S R, Jiao S Z, et al. Fabrication of superhydrophobic TiO2 quadrangular nanorod film with self-cleaning, anti-icing properties[J]. Ceramics International, 2019, 45(9): 11508-11516. |
| [13] | Qiu C, Li M, Chen S X. Anti-icing characteristics of PTFE super hydrophobic coating on titanium alloy surface[J]. Journal of Alloys and Compounds, 2021, 860: 157907. |
| [14] | 谢震廷, 王宏, 朱恂, 等. 光热超疏水材料的制备与防、除冰性能研究[J]. 化工学报, 2021, 72(11): 5840-5848. |
| Xie Z T, Wang H, Zhu X, et al. Preparation and anti-icing/deicing performance of photothermal superhydrophobic surfaces [J]. CIESC Journal, 2021, 72(11): 5840-5848. | |
| [15] | Wang G Y, Shen Y Z, Tao J, et al. Fabrication of a superhydrophobic surface with a hierarchical nanoflake-micropit structure and its anti-icing properties[J]. RSC Advances, 2017, 7(16): 9981-9988. |
| [16] | Bird J C, Dhiman R, Kwon H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476): 385-388. |
| [17] | 向静, 王宏, 朱恂, 等. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552. |
| Xiang J, Wang H, Zhu X, et al. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J]. CIESC Journal, 2019, 70(9): 3545-3552. | |
| [18] | Dimitrakellis P, Gogolides E. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review[J]. Advances in Colloid and Interface Science, 2018, 254: 1-21. |
| [19] | Zhang B B, Zhu Q J, Li Y T, et al. Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion[J]. Chemical Engineering Journal, 2018, 352: 625-633. |
| [20] | Zhang Y W, Bi J R, Wang S Q, et al. Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax[J]. Journal of Colloid and Interface Science, 2019, 533: 742-749. |
| [21] | Barthwal S, Lee B, Lim S H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil[J]. Applied Surface Science, 2019, 496: 143677. |
| [22] | Tan J Y, Hao J J, An Z Q, et al. Superhydrophobic surfaces on brass substrates fabricated via micro-etching and a growth process[J]. RSC Advances, 2017, 7(42): 26145-26152. |
| [23] | Wu Y H, Zhao W J, Wang W R, et al. Fabricating binary anti-corrosion structures containing superhydrophobic surfaces and sturdy barrier layers for Al alloys[J]. RSC Advances, 2016, 6(6): 5100-5110. |
| [24] | 邢敏, 雷西萍, 关晓琳, 等. 铝合金超疏水表面的构建及其稳定性与自清洁性能研究[J]. 表面技术, 2021, 50(9):152-161. |
| Xing M, Lei X P, Guan X L, et al. Research on construction of superhydrophobic surface of aluminum alloy and its stability and self-cleaning performance [J]. Surface Technology, 2021, 50(9):152-161. | |
| [25] | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
| [26] | Yao X D, Hawkins S C, Falzon B G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs[J]. Carbon, 2018, 136: 130-138. |
| [27] | Maldonado C S, de la Rosa J R, Lucio-Ortiz C J, et al. Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene[J]. Materials, 2014, 7(3): 2062-2086. |
| [28] | Rittermeier A, Miao S J, Schröter M K, et al. The formation of colloidal copper nanoparticles stabilized by zinc stearate: one-pot single-step synthesis and characterization of the core-shell particles[J]. Physical Chemistry Chemical Physics, 2009, 11(37): 8358-8366. |
| [29] | Shen Y Z, Wang G Y, Tao J, et al. Anti-icing performance of superhydrophobic texture surfaces depending on reference environments[J]. Advanced Materials Interfaces, 2017, 4(22): 1700836. |
| [30] | Liu W, Xu Q J, Han J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance[J]. Corrosion Science, 2016, 110: 105-113. |
| [31] | Barati Darband G, Aliofkhazraei M, Khorsand S, et al. Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability[J]. Arabian Journal of Chemistry, 2020, 13(1): 1763-1802. |
| [32] | Zhang X Y, Wang H Y, Zhang X G, et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 239-247. |
| [33] | Barthwal S, Lim S H. Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistance properties[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(2): 481-492. |
| [34] | Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corrosion Science, 2019, 158: 108083. |
| [35] | Li L J, Huang T, Lei J L, et al. Robust biomimetic-structural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1449-1457. |
| [36] | Jain R, Pitchumani R. Fabrication and characterization of zinc-based superhydrophobic coatings[J]. Surface and Coatings Technology, 2018, 337: 223-231. |
| [37] | Wang F, Pi J, Song F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal, 2020, 381: 122539. |
| [38] | Ipekci H H, Arkaz H H, Onses M S, et al. Superhydrophobic coatings with improved mechanical robustness based on polymer brushes[J]. Surface and Coatings Technology, 2016, 299: 162-168. |
| [1] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| [2] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [3] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [4] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [5] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [6] | Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass [J]. CIESC Journal, 2025, 76(7): 3539-3551. |
| [7] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [8] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [9] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [10] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [11] | Hongxin DING, Wenxiang GAN, Yongyang ZHAO, Runze JIA, Ziqi KANG, Yulong ZHAO, Yong XIANG. Corrosion mechanisms of X65 steel welded joints in supercritical CO2 and H2O-rich phases [J]. CIESC Journal, 2025, 76(7): 3426-3435. |
| [12] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [13] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| [14] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
| [15] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||