CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5720-5729.DOI: 10.11949/0438-1157.20250477
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Linlin GU1,2(
), Chongyang LIU3, Zhongqing YANG1,2(
), Dong JIANG3, Dongdong QI3, Jingyu RAN1,2
Received:2025-05-06
Revised:2025-09-26
Online:2025-12-19
Published:2025-11-25
Contact:
Zhongqing YANG
顾林林1,2(
), 刘重阳3, 杨仲卿1,2(
), 姜东3, 齐东东3, 冉景煜1,2
通讯作者:
杨仲卿
作者简介:顾林林(1998—),女,博士研究生,gulin199804@163.com
基金资助:CLC Number:
Linlin GU, Chongyang LIU, Zhongqing YANG, Dong JIANG, Dongdong QI, Jingyu RAN. Model construction and validation of aviation kerosene bio-alternative fuel based on multi-objective optimization[J]. CIESC Journal, 2025, 76(11): 5720-5729.
顾林林, 刘重阳, 杨仲卿, 姜东, 齐东东, 冉景煜. 基于多目标优化的航空煤油生物替代燃料模型构建及验证[J]. 化工学报, 2025, 76(11): 5720-5729.
Add to citation manager EndNote|Ris|BibTeX
| 种类 | 密度/(kg/m3) | 运动黏度/(mm2/s) | 氢碳比 | 低热值/(MJ/kg) | 平均分子量 |
|---|---|---|---|---|---|
| RP-3 | 799 | 1.55 | 2.03 | 43.75 | 148 |
| 正丁醚 | 763 | 0.834 | 2.25 | 37.9 | 130 |
| 2-甲基呋喃 | 917 | 0.546 | 1.2 | 30.4 | 82 |
| 二代生物柴油 | 792 | 3.29 | 2.12 | 46.2 | 240 |
Table 1 RP-3 physical properties of aviation kerosene and its characterisation components
| 种类 | 密度/(kg/m3) | 运动黏度/(mm2/s) | 氢碳比 | 低热值/(MJ/kg) | 平均分子量 |
|---|---|---|---|---|---|
| RP-3 | 799 | 1.55 | 2.03 | 43.75 | 148 |
| 正丁醚 | 763 | 0.834 | 2.25 | 37.9 | 130 |
| 2-甲基呋喃 | 917 | 0.546 | 1.2 | 30.4 | 82 |
| 二代生物柴油 | 792 | 3.29 | 2.12 | 46.2 | 240 |
| 种类 | 密度/(kg/m3) | 运动黏度/(mm2/s) | 氢碳比 | 低热值/(MJ/kg) | 平均分子量 |
|---|---|---|---|---|---|
| RP-3 | 799 | 1.55 | 2.03 | 43.75 | 148 |
| 替代燃料 | 800 | 1.549 | 2.015 | 40.60 | 151 |
| 误差/% | 0.22 | 0.02 | 0.76 | 6.38 | 2.17 |
Table 2 Comparison of physical parameters and errors between aviation kerosene and alternative fuels
| 种类 | 密度/(kg/m3) | 运动黏度/(mm2/s) | 氢碳比 | 低热值/(MJ/kg) | 平均分子量 |
|---|---|---|---|---|---|
| RP-3 | 799 | 1.55 | 2.03 | 43.75 | 148 |
| 替代燃料 | 800 | 1.549 | 2.015 | 40.60 | 151 |
| 误差/% | 0.22 | 0.02 | 0.76 | 6.38 | 2.17 |
Fig.6 Numerical simulation and experimental validation of ignition delay time of bio-alternative fuels under atmospheric pressure condition P=0.1 MPa(a) and low-pressure conditions P=0.01 MPa(b)
| [1] | 赵贤. 革新研发理念缓解能源危机[J]. 节能与环保, 2017(3): 44-45. |
| Zhao X. Innovative R&D concepts to alleviate the energy crisiss[J]. Energy Conservation & Environmental Protection, 2017 (3): 44-45. | |
| [2] | 王淑樱. 某型号发动机的生物燃料燃烧特性研究[D]. 天津: 中国民航大学, 2018. |
| Wang S Y. Research on the combustion characteristics of biofuel for a certain type of engine[D]. Tianjin: Civil Aviation University of China, 2018. | |
| [3] | 杨飞. 某型生物航空煤油的基础特性研究[D]. 南京: 南京航空航天大学, 2019. |
| Yang F. Research on the basic characteristics of a certain type of bio-aviation kerosene[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
| [4] | Yao M F, Wang H, Zheng Z Q, et al. Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions[J]. Fuel, 2010, 89(9): 2191-2201. |
| [5] | 赵玉垒. 稀混合气浓度对正丁醇燃烧过程的影响[D]. 青岛: 青岛大学, 2011. |
| Zhao Y L. The influence of lean mixture concentration on the combustion process of n-butanol[D]. Qingdao: Qingdao University, 2011. | |
| [6] | Lupandin V, Thamburaj R, Nikolayev A. Test results of the OGT2500 gas turbine engine running on alternative fuels: BioOil, ethanol, BioDiesel and crude oil[C]//ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2005:421-426. |
| [7] | Rehman A, Phalke D R, Pandey R. Alternative fuel for gas turbine: esterified jatropha oil-diesel blend[J]. Renewable Energy, 2011, 36(10): 2635-2640. |
| [8] | 朱重阳, 甘志文. 生物质组分对航空煤油基础燃烧特性的影响研究[J]. 可再生能源, 2017, 35(12): 1751-1758. |
| Zhu C Y, Gan Z W. Research on the influence of biomass components on the basic combustion characteristics of aviation kerosene[J]. Renewable Energy, 2017, 35(12): 1751-1758. | |
| [9] | 黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值研究煤油在超燃流场中的多步化学反应特征[J]. 推进技术, 2005, 26(2) :101-105. |
| Huang S H, Xu S L, Liu X Y. Numerical study on two-phase flow field of kerosene supersonic ramjet engine and characteristics of multi-step chemical reactions of kerosene in supersonic flow field[J]. Propulsion Technology, 2005, 26(2): 101-105. | |
| [10] | 刘建文, 熊生伟, 马雪松. 正癸烷燃烧详细反应机理的构建及简化[J]. 推进技术, 2012, 33(1) :64-68. |
| Liu J W, Xiong S W, Ma X S. Construction and simplification of the detailed reaction mechanism of n-decane combustion[J]. Journal of Propulsion Technology, 2012, 33(1): 64-68. | |
| [11] | Wang T S. Thermophysics characterization of kerosene combustion[C]//34th Thermophysics Conference. Denver, CO, USA: AIAA, 2000: AIAA2000-2511. |
| [12] | Delfau J L, Bouhria M, Reuillon M, et al. Experimental and computational investigation of the structure of a sooting decane-O2-Ar flame[J]. Symposium (International) on Combustion, 1991, 23(1): 1567-1572. |
| [13] | Dagaut P, Reuillon M, Cathonnet M, et al. High pressure oxidation of liquid fuels from low to high temperature (3): n-Decane[J]. Combustion Science and Technology, 1994, 103(1):349-359. |
| [14] | Dagaut P, Reuillon M, Boettner J C, et al. Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling [J]. Symposium (International) on Combustion, 1994, 25(1): 919-926. |
| [15] | Vijay Kumar M, Veeresh Babu A, Ravi Kumar P. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine[J]. Alexandria Engineering Journal, 2018, 57(1): 509-516. |
| [16] | Cai L M, vom Lehn F, Pitsch H. Higher alcohol and ether biofuels for compression-ignition engine application: a review with emphasis on combustion kinetics[J]. Energy & Fuels, 2021, 35(3): 1890-1917. |
| [17] | Pelucchi M, Namysl S, Ranzi E, et al. Combustion of n-C3—C6 linear alcohols: an experimental and kinetic modeling study (part II): Speciation measurements in a jet-stirred reactor, ignition delay time measurements in a rapid compression machine, model validation, and kinetic analysis[J]. Energy & Fuels, 2020, 34(11): 14708-14725. |
| [18] | Tran L S, Herbinet O, Li Y Y, et al. Low-temperature gas-phase oxidation of diethyl ether: fuel reactivity and fuel-specific products[J]. Proceedings of the Combustion Institute, 2019, 37(1): 511-519. |
| [19] | Tran L S, Wullenkord J, Li Y Y, et al. Probing the low-temperature chemistry of di-n-butyl ether: detection of previously unobserved intermediates[J]. Combustion and Flame, 2019, 210: 9-24. |
| [20] | Liu J, Hu E J, Zeng W, et al. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene[J]. Fuel, 2020, 259: 116210. |
| [21] | Li A, Zhang Z, Cheng X G, et al. Development and validation of surrogates for RP-3 jet fuel based on chemical deconstruction methodology[J]. Fuel, 2020, 267: 116975. |
| [22] | Wu Z Y, Mao Y B, Raza M, et al. Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties[J]. Combustion and Flame, 2019, 208: 388-401. |
| [23] | Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986. |
| [24] | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
| [25] | Herbinet O, Pitz W J, Westbrook C K. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate[J]. Combustion and Flame, 2010, 157(5): 893-908. |
| [26] | Fan X F, Liu Z K, Yang J Z, et al. Pyrolysis of lignocellulosic biofuel di-n-butyl ether (DBE): flow reactor experiments and kinetic modeling[J]. Energy & Fuels, 2021, 35(17): 14077-14086. |
| [27] | Cheng Z J, Niu Q, Wang Z D, et al. Experimental and kinetic modeling studies of low-pressure premixed laminar 2-methylfuran flames[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1295-1302. |
| [28] | Mao Y B, Yu L, Wu Z Y, et al. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combustion and Flame, 2019, 203: 157-169. |
| [29] | Zhang C H, Li B, Rao F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3151-3158. |
| [30] | 姚峰. 激波管的研发与RP-3煤油点火延迟特性研究[D]. 杭州: 浙江大学,2019. |
| Yao F. Research on the development of shock tube and the study on the delay characteristics of RP-3 kerosene ignition[D]. Hangzhou: Zhejiang University, 2019. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [3] | Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology [J]. CIESC Journal, 2025, 76(9): 4563-4577. |
| [4] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [5] | Meng YANG, Xuanzhe JI, Chang LIU, Tao YU, Xiaolong FU, Zuohua HUANG, Chenglong TANG. Ignition characteristics of NEPE propellant containing graphene oxide in gaseous product environment [J]. CIESC Journal, 2025, 76(9): 4893-4902. |
| [6] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
| [7] | Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm [J]. CIESC Journal, 2025, 76(6): 3104-3114. |
| [8] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [9] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [10] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [11] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| [12] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
| [13] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
| [14] | Yingtao WU, Lihan FEI, Xiangdong KONG, Zhi WANG, Chenglong TANG, Zuohua HUANG. Hypergolic ignition characteristics and propulsion performance of imidazolium dicyanamide ionic liquids blended with furfuryl alcohol [J]. CIESC Journal, 2024, 75(5): 2017-2025. |
| [15] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||