CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 2017-2025.DOI: 10.11949/0438-1157.20240102
• Energy and environmental engineering • Previous Articles Next Articles
Yingtao WU1(), Lihan FEI1, Xiangdong KONG1, Zhi WANG2, Chenglong TANG1(
), Zuohua HUANG1
Received:
2024-01-22
Revised:
2024-03-24
Online:
2024-06-25
Published:
2024-05-25
Contact:
Chenglong TANG
武颖韬1(), 费立涵1, 孔祥东1, 王帜2, 汤成龙1(
), 黄佐华1
通讯作者:
汤成龙
作者简介:
武颖韬(1993—),男,博士,讲师,wuyingtao@xjtu.edu.cn
基金资助:
CLC Number:
Yingtao WU, Lihan FEI, Xiangdong KONG, Zhi WANG, Chenglong TANG, Zuohua HUANG. Hypergolic ignition characteristics and propulsion performance of imidazolium dicyanamide ionic liquids blended with furfuryl alcohol[J]. CIESC Journal, 2024, 75(5): 2017-2025.
武颖韬, 费立涵, 孔祥东, 王帜, 汤成龙, 黄佐华. 咪唑二氰胺离子液体掺混糠醇的自燃及推进性能[J]. 化工学报, 2024, 75(5): 2017-2025.
燃料 | 分子结构 | ρ/(g/cm3) | 黏度/(mPa·s) | σ/(mN/m) | ΔHf / (kJ/mol) |
---|---|---|---|---|---|
[AMIM][DCA] | ![]() | 1.1 | 11.2 | 52.8 | 382.0 |
[BMIM][DCA] | ![]() | 1.1 | 36.0 | 42.1 | 266.5 |
[EMIM][DCA] | ![]() | 1.1 | 16.0 | 49.7 | 258.6 |
FA | ![]() | 1.1 | 5.3 | 38.0 | -179.8 |
Table 1 Fuel molecular structures and physical properties at room temperature[16, 25, 27]
燃料 | 分子结构 | ρ/(g/cm3) | 黏度/(mPa·s) | σ/(mN/m) | ΔHf / (kJ/mol) |
---|---|---|---|---|---|
[AMIM][DCA] | ![]() | 1.1 | 11.2 | 52.8 | 382.0 |
[BMIM][DCA] | ![]() | 1.1 | 36.0 | 42.1 | 266.5 |
[EMIM][DCA] | ![]() | 1.1 | 16.0 | 49.7 | 258.6 |
FA | ![]() | 1.1 | 5.3 | 38.0 | -179.8 |
燃料 | C*/(m/s) | CF | Ivac/(m/s) | Isp/(m/s) |
---|---|---|---|---|
[AMIM][DCA], Vf =0 | 1534.7 | 1.8236 | 2893.0 | 2798.8 |
[AMIM][DCA], Vf =0.25 | 1529.2 | 1.8260 | 2887.4 | 2792.3 |
[AMIM][DCA], Vf =0.50 | 1523.6 | 1.8284 | 2881.6 | 2785.7 |
[AMIM][DCA], Vf =0.75 | 1517.7 | 1.8310 | 2875.7 | 2778.9 |
[BMIM][DCA], Vf =0 | 1539.5 | 1.8257 | 2905.9 | 2810.8 |
[BMIM][DCA], Vf =0.25 | 1533.3 | 1.8275 | 2897.7 | 2802.0 |
[BMIM][DCA], Vf =0.50 | 1526.6 | 1.8294 | 2889.0 | 2792.7 |
[BMIM][DCA], Vf =0.75 | 1519.4 | 1.8314 | 2879.7 | 2782.7 |
[EMIM][DCA], Vf =0 | 1531.3 | 1.8243 | 2887.7 | 2793.6 |
[EMIM][DCA], Vf =0.25 | 1526.6 | 1.8266 | 2883.4 | 2788.4 |
[EMIM][DCA], Vf =0.50 | 1521.8 | 1.8288 | 2878.9 | 2783.1 |
[EMIM][DCA], Vf =0.75 | 1516.8 | 1.8312 | 2874.4 | 2777.6 |
FA | 1511.7 | 1.8336 | 2869.6 | 2771.9 |
Table 2 Propulsion performance parameters of different fuel blends
燃料 | C*/(m/s) | CF | Ivac/(m/s) | Isp/(m/s) |
---|---|---|---|---|
[AMIM][DCA], Vf =0 | 1534.7 | 1.8236 | 2893.0 | 2798.8 |
[AMIM][DCA], Vf =0.25 | 1529.2 | 1.8260 | 2887.4 | 2792.3 |
[AMIM][DCA], Vf =0.50 | 1523.6 | 1.8284 | 2881.6 | 2785.7 |
[AMIM][DCA], Vf =0.75 | 1517.7 | 1.8310 | 2875.7 | 2778.9 |
[BMIM][DCA], Vf =0 | 1539.5 | 1.8257 | 2905.9 | 2810.8 |
[BMIM][DCA], Vf =0.25 | 1533.3 | 1.8275 | 2897.7 | 2802.0 |
[BMIM][DCA], Vf =0.50 | 1526.6 | 1.8294 | 2889.0 | 2792.7 |
[BMIM][DCA], Vf =0.75 | 1519.4 | 1.8314 | 2879.7 | 2782.7 |
[EMIM][DCA], Vf =0 | 1531.3 | 1.8243 | 2887.7 | 2793.6 |
[EMIM][DCA], Vf =0.25 | 1526.6 | 1.8266 | 2883.4 | 2788.4 |
[EMIM][DCA], Vf =0.50 | 1521.8 | 1.8288 | 2878.9 | 2783.1 |
[EMIM][DCA], Vf =0.75 | 1516.8 | 1.8312 | 2874.4 | 2777.6 |
FA | 1511.7 | 1.8336 | 2869.6 | 2771.9 |
1 | Salvador C A V, Costa F S. Vaporization lengths of hydrazine fuels burning with NTO[J]. Journal of Propulsion and Power, 2006, 22(6): 1362-1372. |
2 | Kulkarni S, Bagalkote V, Patil S, et al. Theoretical evaluation and experimental validation of performance parameters of new hypergolic liquid fuel blends with red fuming nitric acid as oxidizer[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 520-525. |
3 | Pichon S, Catoire L, Chaumeix N, et al. Search for green hypergolic propellants: gas-phase ethanol/nitrogen tetroxide reactivity[J]. Journal of Propulsion and Power, 2005, 21(6): 1057-1061. |
4 | Phillip J, Youngblood S, Grubelich M, et al. Development and testing of a nitrous-oxide/ethanol bi-propellant rocket engine[C]∥52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016: 5092. |
5 | Pasini A, Torre L, Pace G, et al. Pulsed chemical rocket with green high performance propellants[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013: 3756. |
6 | Schneider S, Hawkins T, Rosander M, et al. Ionic liquids as hypergolic fuels[J]. Energy & Fuels, 2008, 22(4): 2871-2872. |
7 | Kelkar M S, Maginn E J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations[J]. The Journal of Physical Chemistry. B, 2007, 111(18): 4867-4876. |
8 | Zhang Q H, Shreeve J M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574. |
9 | Zhang Y Q, Shreeve J M. Dicyanoborate-based ionic liquids as hypergolic fluids[J]. Angewandte Chemie, 2011, 50(4): 935-937. |
10 | 黄实. 新型高能低毒液体推进剂的合成及点火性能研究[D]. 绵阳: 中国工程物理研究院, 2016. |
Huang S. Study on synthesis and ignition performance of new high-energy and low-toxicity liquid propellant[D].Mianyang: China Academy of Engineering Physics, 2016. | |
11 | Sutton G P. History of Liquid Propellant Rocket Engines[M]. Reston, Virginia.: American Institute of Aeronautics and Astronautics, 2006. |
12 | Liu Y, Guo Y, Fei L H, et al. Experimental study on hypergolic ignition and non-ignition for dicyanamide-based ionic liquids at low impact velocity conditions[J]. Energetic Materials Frontiers, 2021, 2(4): 241-248. |
13 | He L, Tao G H, Parrish D A, et al. Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels[J]. Chemistry, 2010, 16(19): 5736-5743. |
14 | Newsome D A, Vaghjiani G L, Sengupta D. An ab initio based structure property relationship for prediction of ignition delay of hypergolic ionic liquids[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 759-764. |
15 | Khomik S V, Usachev S V, Medvedev S P, et al. Ignition characteristics of hypergolic fuels with various N-substituents[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3311-3317. |
16 | Li J L, Weng X Y, Tang C L, et al. The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA][J]. Fuel, 2018, 215: 612-618. |
17 | 杜增晖, 孙策, 李钰潼, 等. 咪唑二氰胺类离子液体在白色发烟硝酸中自燃特性的实验研究[J]. 西安交通大学学报, 2022, 56(4): 13-22. |
Du Z H, Sun C, Li Y T, et al. Experimental study on hypergolic characteristics of imidazolium dicyanamide ionic liquids in white Fuming nitric acid[J]. Journal of Xi’an Jiaotong University, 2022, 56(4): 13-22. | |
18 | 翁欣妍, 杜宗罡, 于君, 等. 含BH3(CN)BH2(CN)-阴离子的离子液体自着火过程的实验研究[J]. 含能材料, 2018, 26(7): 557-564. |
Weng X Y, Du Z G, Yu J, et al. Experimental study of hypergolic process of ionic liquids with BH3(CN)BH2(CN)- anion[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 557-564. | |
19 | 王镜淇, 张星, 陈雪娇, 等. 与硝基氧化剂快速自燃的绿色燃料研究进展[J]. 宇航总体技术, 2022, 6(3): 40-48. |
Wang J Q, Zhang X, Chen X J, et al. Investigation of nitro-oxidizers based green hypergolic fuels with superior low ignition delay[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 40-48. | |
20 | Munjal N L. Ignition catalysts for furfuryl alcohol-red fuming nitric acid bipropellant[J]. AIAA Journal, 1970, 8(5): 980-981. |
21 | Kulkarni S G, Bagalkote V S. Studies on pre-ignition reactions of hydrocarbon-based rocket fuels hypergolic with red fuming nitric acid as oxidizer[J]. Journal of Energetic Materials, 2010, 28(3): 173-188. |
22 | Chalmpes N, Bourlinos A B, Talande S, et al. Nanocarbon from rocket fuel waste: the case of furfuryl alcohol-fuming nitric acid hypergolic pair[J]. Nanomaterials, 2020, 11(1): 1. |
23 | James O O, Maity S, Usman L A, et al. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural[J]. Energy & Environmental Science, 2010, 3(12): 1833-1850. |
24 | Nandiwale K Y, Pande A M, Bokade V V. One step synthesis of ethyl levulinate biofuel by ethanolysis of renewable furfuryl alcohol over hierarchical zeolite catalyst[J]. RSC Advances, 2015, 5(97): 79224-79231. |
25 | Bhosale M V K, Kulkarni S G, Kulkarni P S. Ionic liquid and biofuel blend: a low-cost and high performance hypergolic fuel for propulsion application[J]. ChemistrySelect, 2016, 1(9): 1921-1925. |
26 | Wu Y T, Wang Z, Fei L H, et al. An experimental study on the hypergolic process enhanced by pre-ignition heat release: [AMIM][DCA]/furfuryl alcohol blends reacting with white fuming nitric acid[J]. Fuel, 2022, 326: 125103. |
27 | Sun C G, Tang S K, Zhang X W. Hypergolicity evaluation and prediction of ionic liquids based on hypergolic reactive groups[J]. Combustion and Flame, 2019, 205: 441-445. |
28 | Jia F F, Sun K, Zhang P, et al. Marangoni effect on the impact of droplets onto a liquid-gas interface[J]. Physical Review Fluids, 2020, 5(7): 073605. |
29 | Maples R E. Petroleum Refinery Process Economics[M]. 2nd ed. Tulsa, Okla.: PennWell Corp., 2000. |
30 | Li J L, Fan W, Weng X Y, et al. Experimental observation of hypergolic ignition of superbase-derived ionic liquids[J]. Journal of Propulsion and Power, 2018, 34(1): 125-132. |
31 | Weng X Y, Tang C L, Li J L, et al. Coulomb explosion and ultra-fast hypergolic ignition of borohydride-rich ionic liquids with WFNA[J]. Combustion and Flame, 2018, 194: 464-471. |
32 | Kim T, Assary R S, Marshall C L, et al. Acid-catalyzed furfuryl alcohol polymerization: characterizations of molecular structure and thermodynamic properties[J]. ChemCatChem, 2011, 3(9): 1451-1458. |
33 | Gordon S, Mcbride B. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅰ): Analysis[CP]. NASA Reference Publication 1311, 1994. |
34 | Mcbride B, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅱ): User manual and program description[CP]. NASA Reference Publication 1311, 1996. |
[1] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[2] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[3] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[4] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[5] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[6] | Ruirui WANG, Ying JIN, Yumei LIU, Mengyue LI, Shengwen ZHU, Ruiyi YAN, Ruixia LIU. Study on design of polymeric ionic liquids and the performance for selective oxidation of cyclohexane [J]. CIESC Journal, 2024, 75(4): 1552-1564. |
[7] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[8] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[9] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[10] | Xinzi ZHOU, Zenghui LI, Xianyang MENG, Jiangtao WU. Experimental study on viscosity of high purity air at low temperatures [J]. CIESC Journal, 2024, 75(3): 782-788. |
[11] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[12] | Xiaobin ZHAN, Huibin WANG, Yalong JIANG, Tielin SHI. Research on power consumption characteristics of high viscosity fluid mixing in acoustic resonance mixer [J]. CIESC Journal, 2024, 75(2): 531-542. |
[13] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[14] | Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack [J]. CIESC Journal, 2024, 75(2): 637-646. |
[15] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||