化工学报 ›› 2018, Vol. 69 ›› Issue (10): 4311-4323.doi: 10.11949/j.issn.0438-1157.20180418

• 表面与界面工程 • 上一篇    下一篇

层流状态下高压高转速二氧化碳干气密封的惯性效应分析

许恒杰1,2, 宋鹏云1,2, 毛文元2, 邓强国2, 孙雪剑2   

  1. 1. 昆明理工大学环境科学与工程学院, 云南 昆明 650500;
    2. 昆明理工大学化学工程学院, 云南 昆明 650500
  • 收稿日期:2018-04-23 修回日期:2018-06-28 出版日期:2018-10-05 发布日期:2018-10-05
  • 通讯作者: 宋鹏云 E-mail:songpengyunkm@sina.com
  • 基金资助:

    国家自然科学基金项目(51465026)。

Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition

XU Hengjie1,2, SONG Pengyun1,2, MAO Wenyuan2, DENG Qiangguo2, SUN Xuejian2   

  1. 1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Received:2018-04-23 Revised:2018-06-28 Published:2018-10-05 Online:2018-10-05
  • Supported by:

    supported by the National Natural Science Foundation of China (51465026).

摘要:

借鉴考虑惯性效应的气体止推轴承理论,以维里三项截断式描述二氧化碳的实际气体行为,同时考虑阻塞流效应和密封端面间气膜的黏度变化,采用有限差分法分别分析了层流状态下惯性效应对泵入式、泵出式螺旋槽干气密封稳态性能的影响规律,并与理想气体无惯性假设模型的计算结果进行了对比。结果表明:与理想气体相比,惯性效应对二氧化碳实际气体干气密封性能的影响程度更高。惯性效应使泵入式螺旋槽干气密封泄漏率和开启力均减小,而对泵出式螺旋槽干气密封的影响程度恰好相反。以泵入式螺旋槽干气密封为例,惯性效应对二氧化碳干气密封性能(泄漏率、开启力)的影响分别随密封压力和转速的增大而增强,随气膜厚度的增大而减小,密封压力为10 MPa,气膜厚度为3 μm,转速为20000 r·min-1时,惯性效应使泄漏率降低62.21%,开启力降低35.03%,使二氧化碳泵入式螺旋槽干气密封发生阻塞流动的临界进口压力提高。此外,二氧化碳的温度越接近其临界温度,惯性效应表现得越明显。

关键词: 螺旋槽干气密封, 惯性效应, 实际气体, 二氧化碳, 数值分析, 层流

Abstract:

The real gas property of carbon dioxide was expressed by third term virial equation, both the choked flow effect and the variation of gas viscosity were taken into account, the influence of inertia effect on the steady characteristics of pumping-inward and pumping-outward spiral groove dry gas seal (S-DGS) under laminar condition have been numerically investigated by referencing the theory of gas thrust bearing which considering inertia effect. Compared with the assumptions of ideal gas and inertialess, the results show that inertia effect induce a stronger influence on carbon dioxide real gas S-DGS. Inertia effect reduced leakage rate and opening force of pumping-inward S-DGS but the opposite was obtained for pumping-outward S-DGS. Taken pumping-inward S-DGS as example, the influence of inertia effect on the steady characteristics of carbon dioxide S-DGS (i.e. leakage rate and opening force) gradually enhanced with the increase of sealed gas pressure and rotational speed, while it being weaken with increased gas film thickness. The relative deviations of leakage rate and opening force caused by the inertia effect are 62.21% and 35.03% when sealed gas pressure is 10 MPa, gas film thickness is 3μm and rotational speed is 20000 r·min-1, and the critical entrance pressure which causes a choked flow at exit is improved. In addition, the closer the temperature of carbon dioxide is to its critical temperature, the more obvious the inertial effect is.

Key words: spiral groove dry gas seal, inertia effect, real gas, carbon dioxide, numerical analysis, laminar

中图分类号: 

  • S277.9
[1] 赵航, 邓清华, 黄雯婷, 等. 超临界二氧化碳离心压缩机叶顶两相流动研究[J]. 工程热物理学报, 2015, 36(7):1433-1436. ZHAO H, DENG Q H, HUANG W T, et al. Numerical investigation on the blade tip two-phase flow characteristics of a supercritical CO2 centrifugal compressor[J]. Journal of Engineering Thermophysics, 2015, 36(7):1433-1436.
[2] KIMBALLl K J, CLEMENTONI E M. Supercritical carbon dioxide brayton power cycle development overview[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012:931-940.
[3] THATTE A, DHEERADHADA V. Coupled physics performance predictions and risk assessment for dry gas seal operating in MW-Scale supercritical CO2turbine[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016.
[4] 李沛剑, 郝小龙, 宋满存, 等. 超临界二氧化碳涡轮发电机的设计及应用探讨[J]. 舰船科学技术, 2017, 39(9):111-116. LI P J, HAO X L, SONG M C, et al. The design and application of a supercritical carbon dioxide turbo-generator[J]. Ship Science and Technology, 2017, 39(9):111-116.
[5] LIU Y, SHEN X, XU W. Numerical analysis of dynamic coefficients for gas film face seals[J]. Journal of Tribology, 2002, 124(4):743-754.
[6] THATTE A, ZHENG X. Hydrodynamics and sonic flow transition in dry gas seals[C]//Proceedings of the ASME Turbo Expo. Fairfield, United States:American Society of Mechanical Engineers, 2014.
[7] GUPTA R S, SHARMA L G. Centrifugal inertia effects in misaligned radial face seals[J]. Wear, 1989, 129(2):319-332.
[8] KOGA T, FUJITA T. The hydrostatic noncontact seal including fluid inertia effect[J]. ASLE Transactions, 1986, 29(1):35-42.
[9] 王美华, 董勋. 可控膜机械密封油膜压力场的有限元分析[J]. 润滑与密封, 1993, (6):12-16. WANG M H, DONG X. FEM analysis of pressure field of oil-film in controlled-film mechanical seal[J]. Lubrication Engineering, 1993, (6):12-16.
[10] 彭旭东, 顾永泉. 不同相态下端面形貌和流体惯性对机械密封性能的影响[J]. 中国石油大学学报(自然科学版), 1990, 14(3):62-70. PENG X D, GU Y Q. The effects of coning face and fluid inertia on the performance of mechanical face seals at various phase states[J]. Journal of China University of Petroleum (Edition of Natural Science), 1990, 14(3):62-70.
[11] BRUNETIÉRE N, TOURNERIE B. The effect of inertia on radial flows-application to hydrostatic seals[J]. Journal of Tribology, 2006, 128(3):566-574.
[12] ZHAO Y, WEI C, YUAN S H, et al. Theoretical and experimental study of cavitation effects on the dynamic characteristic of spiral-groove rotary seals (SGRSs)[J]. Tribology Letters, 2016, 64(3):50.
[13] ZUK J. Analysis of face deformation effects on gas film seal performance[J]. ASLE Transactions, 1973, 16(4):267-275.
[14] THOMAS S, BRUNETIERE N, TOUMERIE B. Numerical modeling of high pressure gas face seals[J]. Journal of Tribology, 2006, 128(2):241-242.
[15] THOMAS S, BRUNETIÉRE N, TOUMERIE B. Thermoelastohydrodynamic behavior of mechanical gas face seals operating at high pressure[J]. Journal of Tribology, 2007, 129(4):841-850.
[16] FAIRUZ Z M, JAHN I. Performance of supercritical CO2 dry gas seals near the critical point[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016.
[17] FAIRUZ Z M, JAHN I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102:333-347.
[18] 宋鹏云, 胡晓鹏, 许恒杰. 实际气体对T槽干气密封动态特性的影响[J]. 化工学报, 2014, 65(4):1344-1352. SONG P Y, HU X P, XU H J. Effect of real gas on dynamic performance of T-groove dry gas seal[J]. CIESC Journal, 2014, 65(4):1344-1352.
[19] 宋鹏云, 张帅, 许恒杰. 同时考虑实际气体效应和滑移流效应螺旋槽干气密封性能分析[J]. 化工学报, 2016, 67(4):1405-1415. SONG P Y, ZHANG S, XU H J. Analysis of performance of spiral groove dry gas seal considered effects of both real gas and slip flow[J]. CIESC Journal, 2016, 67(4):1405-1415.
[20] 邓成香, 宋鹏云, 马爱琳. 干气密封的实际气体焦耳-汤姆逊效应分析[J]. 化工学报, 2016, 67(9):3833-3842. DENG C X, SONG P Y, MA A L. Analysis of Joule-Thomson effect of real gas system sealed by dry gas[J]. CIESC Journal, 2016, 67(9):3833-3842.
[21] POLING B E, PRAUSNITZ J M, JOHN P O C, et al. The Properties of Gases and Liquids[M]. New York:Mcgraw-Hill, 2001.
[22] OCHIAI M, HASHIMOTO H. Static and dynamic characteristics of high-speed stepped thrust gas bearings (theoretical analysis considering fluid inertia forces)[J]. Proceedings of the School of Engineering of Tokai University, 1996, 21:107-108.
[23] 马春红, 白少先, 彭旭东, 等. 螺旋槽端面微间隙高速气流润滑密封特性[J]. 摩擦学学报, 2015, 35(6):699-706. MA C H, BAI S X, PENG X D, et al. Properties of high speed airflow lubrication in micro-clearance of spiral-groove face seals[J]. Tribology, 2015, 35(6):699-706.
[24] ZUK J, LUDWIG L P, JOHNSON R L. Compressible flow across shaft face seals[C]//Fifth International Conference on Fluid Sealing. BHRA, Coventry, England, 1971.
[25] 许恒杰, 宋鹏云, 毛文元, 等. 考虑氢气实际气体效应和阻塞流效应的螺旋槽干气密封动态特性分析[J]. 化工学报, 2017, 68(12):4675-4684. XU H J, SONG P Y, MAO W Y, et al. Dynamic characteristics of spiral groove dry gas seals with consideration of hydrogen real gas and choked flow effects[J]. CIESC Journal, 2017, 68(12):4675-4684.
[26] 马春红. 螺旋槽干气密封中低压热动力润滑特性研究[D]. 杭州:浙江工业大学, 2017. MA C H. Study on thermo-hydrodynamic lubrication characteristics of spiral groove gas face seals operating at low or medium pressure[D]. Hangzhou:Zhejiang University of Technology, 2017.
[27] 刘晖. 实际气体温度绝热指数和容积绝热指数的计算[J]. 石油化工高等学校学报, 2000, 13(4):42-45. LIU H. Calculation of the isentropic temperature change exponent and isentropic volume change exponent of real gas[J]. Journal of Petrochemical Universities, 2000, 13(4):42-45.
[28] PERRY R H, GREEN D W. Perry's Chemical Engineers' Handbook[M]. Beijing:Science Press, 2001.
[29] HUANG P. Numerical Calculation of Lubrication:Methods and Programs[M]. Beijing:Tsinghua University Press, 2013.
[30] GABRIEL R P. Fundamentals of spiral groove noncontacting face seals[J]. Lubrication Engineering, 1994, 50(3):215-224.
[31] BONNEAU D, HUITRIC J, TOURNERIE B. Finite element analysis of grooved gas thrust bearings and grooved gas face seals[J]. Journal of Tribology, 1993, 115(3):348-354.
[32] FARIA M T C, MIRANDA W M. Pressure dam influence on the performance of gas face seals[J]. Tribology International, 2012, 47:134-141.
[33] 宋鹏云, 丁志浩. 螺旋槽泵出型干气密封端面气膜压力近似解析计算[J]. 润滑与密封, 2011, 36(4):1-3. SONG P Y, DING Z H. An approximate analytical method of the gas film pressure of the outward pumping spiral groove dry gas seals[J]. Lubrication Engineering, 2011, 36(4):1-3.
[1] 李敏霞, 詹浩淼, 王派, 刘雪涛, 李昱翰, 马一太. 一种带引射器和经济器的CO2跨临界制冷系统[J]. 化工学报, 2021, 72(S1): 146-152.
[2] 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
[3] 陈尔健, 代彦军. 使用NH3-LiNO3工质对的增压型回热吸收循环性能分析[J]. 化工学报, 2021, 72(S1): 445-452.
[4] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[5] 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
[6] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[7] 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303.
[8] 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238.
[9] 平甜甜, 尹鑫, 董玉, 申淑锋. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
[10] 马玖辰, 易飞羽, 张秋丽, 王宇. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
[11] 刘庭江, 王静娴, 于洋, 赵一鸣, 胡大鹏. 壁面脉动传热对气波制冷性能影响研究[J]. 化工学报, 2021, 72(8): 4073-4080.
[12] 洪燕珍, 王笛, 李卓昱, 徐亚南, 王宏涛, 苏玉忠, 彭丽, 李军. 超临界二氧化碳介入的α-松油醇催化合成1,8-桉叶素[J]. 化工学报, 2021, 72(7): 3680-3685.
[13] 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
[14] 侯玉洁, 梁琳, 江子旭, 闫兴清, 于小哲, 吕先舒, 喻健良. 惰性气体对粉尘爆炸泄放特性影响的实验研究[J]. 化工学报, 2021, 72(5): 2887-2895.
[15] 石敦峰, 甘云华, 罗燕来, 江政纬, 周毅. 乙醇浓度和应变率对扩散火焰特性的数值分析[J]. 化工学报, 2021, 72(5): 2801-2809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛娟琴, 孟令嫒, 沈彬彬, 杜士毅, 兰新哲. 超声波解吸柠檬酸盐溶液中二氧化硫的研究[J]. CIESC Journal, 2007, 15(4): 486 -491 .
[2] 吴绵斌, 夏黎明, 岑沛霖. 应用固定化里氏木霉在螺旋纤维床生物反应器中连续降解壳聚糖的研究[J]. CIESC Journal, 2002, 10(1): 84 -88 .
[3] K.Smolders, D.Geldart, J.Baeyens. 流化床中旋风下料管的物理模型[J]. CIESC Journal, 2001, 9(4): 337 -347 .
[4] 徐铜文, 杨伟华, 何炳林. 电场增强条件下双极膜水解离的简化模型[J]. CIESC Journal, 2001, 9(2): 179 -185 .
[5] 许松林, Jose Espinosa, Hector E. Salomone, Oscar A. Iribarren. 间歇提馏塔的操作[J]. CIESC Journal, 2001, 9(2): 141 -144 .
[6] 蔡继勇, 陈听宽, 罗毓珊. The Measurement of Oil, Gas and Water Flowrates in Three-Phase Slug Flow[J]. CIESC Journal, 1998, 6(4): 315 -321 .
[7] 徐南平, 汪朝晖, 董军航, 时钧. Estimation of solubility of solids in supercritical carbon dioxide[J]. CIESC Journal, 1997, 5(1): 29 -37 .
[8] M.Kamel,J.I.Lombrana,C.deElvira,R.Rodríguez. 微波及辐射真空干燥过程中的干燥动力学及能量消耗[J]. CIESC Journal, 2004, 12(6): 809 -813 .
[9] 昝佳, 朱德权, 谭丰苹, 蒋国强, 林莹, 丁富新. 氟脲嘧啶微粒-壳聚糖微敏性水凝胶复合释药系统的制备
[J]. CIESC Journal, 2006, 14(2): 235 -241 .
[10] 苏东海, 孙君社, 刘萍, 吕燕萍. `不同预处理方式对玉米叶和玉米秆酶解率的影响[J]. CIESC Journal, 2006, 14(6): 796 -801 .