化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1228-1238.DOI: 10.11949/0438-1157.20221377
张伟政(), 赵吉军(
), 马学忠(
), 张琦璇, 庞益祥, 张俊涛
收稿日期:
2022-10-18
修回日期:
2022-11-14
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
赵吉军,马学忠
作者简介:
张伟政(1978—),男,博士,副教授,zhangweiz@163.com
基金资助:
Weizheng ZHANG(), Jijun ZHAO(
), Xuezhong MA(
), Qixuan ZHANG, Yixiang PANG, Juntao ZHANG
Received:
2022-10-18
Revised:
2022-11-14
Online:
2023-03-05
Published:
2023-04-19
Contact:
Jijun ZHAO, Xuezhong MA
摘要:
高速工况下密封间隙内流体黏性生热严重且流动行为复杂,流体流动状态是影响跨尺度间隙流固传热过程和温度分布的关键因素之一,应用ANSYS Fluent软件在湍流与层流计算模型下建立了环形槽与螺旋槽复合式端面构型(ASG)的三维热流体动力润滑(THD)模型,对比了两模型下螺旋槽的冷却性能差异与环形槽的降温作用,以此揭示了流动状态对端面型槽冷却作用的影响机理,分析了型槽几何参数对两模型下温度场及密封性能的影响规律。结果表明:湍流模型下深螺旋槽内存在的大片死流体区阻碍了槽口冷流体进入到槽根部,致使螺旋槽对间隙内高温流体的冷却作用衰减;层流模型下深螺旋槽内充满更多的冷流体,冷却作用较强。内径侧环形槽在两模型下均具有显著的降温作用,且随槽深、槽宽的适当增加其降温作用得到强化;持续增加螺旋槽槽深并不能达到持续降温的目的。液膜温度峰值在湍流模型下的预测值高于层流模型29~40 K。
中图分类号:
张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238.
Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals[J]. CIESC Journal, 2023, 74(3): 1228-1238.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
密封环内径ri/mm | 40 | 密封间隙h0/μm | 10 |
环形槽内径ra1/mm 环形槽外径ra2/mm | 41 44 | 环形槽槽深ha/μm 螺旋槽槽深hg/μm | 100 100 |
螺旋槽槽根半径rg/mm | 45 | 螺旋槽个数Ng | 12 |
密封环外径ro/mm | 50 | 转速n/(r/min) | 25000 |
螺旋槽槽坝比β | 0.5 | 内径侧压力pi/MPa | 0.1 |
螺旋槽槽宽比γ 螺旋角α/(°) | 0.5 18 | 外径侧压力po/MPa 密封介质 | 2.0 水 |
表1 几何及操作参数
Table 1 Geometric and operating parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
密封环内径ri/mm | 40 | 密封间隙h0/μm | 10 |
环形槽内径ra1/mm 环形槽外径ra2/mm | 41 44 | 环形槽槽深ha/μm 螺旋槽槽深hg/μm | 100 100 |
螺旋槽槽根半径rg/mm | 45 | 螺旋槽个数Ng | 12 |
密封环外径ro/mm | 50 | 转速n/(r/min) | 25000 |
螺旋槽槽坝比β | 0.5 | 内径侧压力pi/MPa | 0.1 |
螺旋槽槽宽比γ 螺旋角α/(°) | 0.5 18 | 外径侧压力po/MPa 密封介质 | 2.0 水 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
动环材料 静环材料 | 不锈钢 碳石墨 | 静环比热容cS/(J/(kg‧K)) 介质比热容cF/(J/(kg‧K)) | 670 4200 |
动环厚度bR/mm | 5 | 动环密度ρR/(kg/m3) | 7930 |
静环厚度bS/mm | 5 | 静环密度ρS/(kg/m3) | 2400 |
动环热导率kR/(W/(m‧K)) 静环热导率kS/(W/(m‧K)) | 15 20 | 黏温系数 冲洗液速度Uf/(m/s) | 0.0175 7 |
介质热导率kF/(W/(m‧K)) | 0.65 | 介质温度T0/K | 303.16 |
动环比热容cR/(J/(kg‧K)) | 500 | 环境温度TL/K | 303.16 |
表2 THD分析物性参数
Table 2 Physical parameters in THD analysis
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
动环材料 静环材料 | 不锈钢 碳石墨 | 静环比热容cS/(J/(kg‧K)) 介质比热容cF/(J/(kg‧K)) | 670 4200 |
动环厚度bR/mm | 5 | 动环密度ρR/(kg/m3) | 7930 |
静环厚度bS/mm | 5 | 静环密度ρS/(kg/m3) | 2400 |
动环热导率kR/(W/(m‧K)) 静环热导率kS/(W/(m‧K)) | 15 20 | 黏温系数 冲洗液速度Uf/(m/s) | 0.0175 7 |
介质热导率kF/(W/(m‧K)) | 0.65 | 介质温度T0/K | 303.16 |
动环比热容cR/(J/(kg‧K)) | 500 | 环境温度TL/K | 303.16 |
1 | 中国机械工程学会. 中国机械工程技术路线图[M]. 北京: 中国科学技术出版社, 2011. |
Chinese Mechanical Engineering Society. Technology Roadmaps of Chinese Mechanical Engineering[M]. Beijing: Science and Technology of China Press, 2011. | |
2 | Ma C H, Bai S X, Peng X D. Thermo-hydrodynamic characteristics of spiral groove gas face seals operating at low pressure[J]. Tribology International, 2016, 95: 44-54. |
3 | 陈汇龙, 桂铠, 李新稳, 等. 工况参数对机械密封液膜汽化特性及性能的影响[J]. 中国机械工程, 2021, 32(1): 2-11. |
Chen H L, Gui K, Li X W, et al. Influences of operating parameters on vaporization characteristics and properties of liquid films for mechanical seals[J]. China Mechanical Engineering, 2021, 32(1): 2-11. | |
4 | Migout F, Brunetière N, Tournerie B. Study of the fluid film vaporization in the interface of a mechanical face seal[J]. Tribology International, 2015, 92: 84-95. |
5 | Takami M R, Gerdroodbary M B, Ganji D D. Thermal analysis of mechanical face seal using analytical approach[J]. Thermal Science and Engineering Progress, 2018, 5: 60-68. |
6 | 于晓康. 高速亚毫米螺旋槽端面密封液膜惯性效应研究[D]. 杭州: 浙江工业大学, 2021. |
Yu X K. Study on inertia effect of liquid film for sub-millimeter spiral-grooved face seal at high-speed conditions[D]. Hangzhou: Zhejiang University of Technology, 2021. | |
7 | Qiu Y F, Khonsari M M. Thermohydrodynamic analysis of spiral groove mechanical face seal for liquid applications[J]. Journal of Tribology, 2012, 134(2): 021703. |
8 | Tournerie B, Danos J C, Frêne J. Three-dimensional modeling of THD lubrication in face seals[J]. Journal of Tribology, 2001, 123(1): 196-204. |
9 | Błasiak S, Kundera C. A numerical analysis of the grooved surface effects on the thermal behavior of a non-contacting face seal[J]. Procedia Engineering, 2012, 39: 315-326. |
10 | 孟祥铠, 江莹莹, 赵文静, 等. 螺旋槽液膜密封热流体动力润滑性能分析[J]. 化工学报, 2019, 70(4): 1512-1521. |
Meng X K, Jiang Y Y, Zhao W J, et al. Analysis of thermohydrodynamic lubrication performance of spiral-grooved liquid film seals[J]. CIESC Journal, 2019, 70(4): 1512-1521. | |
11 | Meng X K, Zhao W J, Shen M X, et al. Thermohydrodynamic analysis on herringbone-grooved mechanical face seals with a quasi-3D model[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(11): 1402-1414. |
12 | Luan Z G, Khonsari M M. Heat transfer correlations for laminar flows within a mechanical seal chamber[J]. Tribology International, 2009, 42(5): 770-778. |
13 | Luan Z G, Khonsari M M. Analysis of conjugate heat transfer and turbulent flow in mechanical seals[J]. Tribology International, 2009, 42(5): 762-769. |
14 | Feng H H, Peng L P. Numerical analysis of water-lubricated thrust bearing with groove texture considering turbulence and cavitation[J]. Industrial Lubrication and Tribology, 2018, 70(6): 1127-1136. |
15 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J].化工学报, 2019, 70(7): 2645-2659. |
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
16 | Lin X H, Jiang S Y, Zhang C B, et al. Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation, inertia and turbulence[J]. Tribology International, 2018, 119: 645-658. |
17 | Feng H H, Jiang S Y, Ji A. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects[J]. Tribology International, 2019, 130: 245-260. |
18 | 张肖寒. 液膜润滑机械密封湍流效应研究[D]. 杭州: 浙江工业大学, 2020. |
Zhang X H. Study on turbulent effect of liquid film lubricated mechanical seals[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
19 | Qiu Y J, Meng X K, Liang Y Y, et al. Thermal mixing effect and heat transfer in U-shaped notch on the mechanical seal face[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(9): 1924-1936. |
20 | Brunetière N, Modolo B. Heat transfer in a mechanical face seal[J]. International Journal of Thermal Sciences, 2009, 48(4): 781-794. |
21 | 马学忠. 高速螺旋槽端面密封流体空化与惯性效应研究[D]. 杭州: 浙江工业大学, 2019. |
Ma X Z. Fluid cavitation and inertia effects in spiral-grooved face seals under high-speed conditions[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
22 | 沈伟. 高参数干气密封的惯性与湍流效应影响分析与型槽设计[D]. 杭州: 浙江工业大学, 2019. |
Shen W. Surface groove design and inertia effect and turbulent effect analysis of high parameter dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
23 | Brunetière N, Tournerie B, Frêne J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523. |
24 | Brunetière N. A modified turbulence model for low Reynolds numbers: applications to hydrostatic seals[J]. Journal of Tribology, 2005, 127(1): 130-140. |
25 | 张肖寒, 孟祥铠, 梁杨杨, 等. 基于湍流模型的高速螺旋槽机械密封稳态性能研究[J]. 摩擦学学报, 2020, 40(2): 260-270. |
Zhang X H, Meng X K, Liang Y Y, et al. Steady performance on high speed spiral-grooved mechanical seals based on turbulent model[J]. Tribology, 2020, 40(2): 260-270. | |
26 | 徐志豪. 高速低黏润滑剂滑动轴承热流体动力润滑分析[D]. 合肥: 合肥工业大学, 2017. |
Xu Z H. Thermohydrodynamic lubrication analysis for high speed and low viscosity of journal bearing[D]. Hefei: Hefei University of Technology, 2017. | |
27 | Du Q W, Zhang D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558. |
28 | 张帆, 宋鹏云. 机械密封对流换热系数确定方法研究[J]. 润滑与密封, 2013, 38(7): 51-56. |
Zhang F, Song P Y. Research on determining methods of convective heat transfer coefficients of mechanical seals[J]. Lubrication Engineering, 2013, 38(7): 51-56. | |
29 | Wang H, Zhu B S, Lin J S, et al. A thermohydrodynamic analysis of dry gas seals for high-temperature gas-cooled reactor[J]. Journal of Tribology, 2013, 135(2): 1-9. |
30 | Becker K M. Measurements of convective heat transfer from a horizontal cylinder rotating in a tank of water[J]. International Journal of Heat and Mass Transfer, 1963, 6(12): 1053-1062. |
31 | Feng K, Li W J, Deng Z H, et al. Thermohydrodynamic analysis and thermal management of spherical spiral groove gas bearings[J]. Tribology Transactions, 2017, 60(4): 629-644. |
[1] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[2] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[3] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[4] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[5] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[6] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[7] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[8] | 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426. |
[9] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
[10] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
[11] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[12] | 林志敏, 王崇兆, 强国智, 刘树山, 王良璧. 润滑油在内插同轴交叉翼型涡产生器管内流动与传热特性分析[J]. 化工学报, 2022, 73(11): 4957-4973. |
[13] | 孟祥铠, 孟令超, 马艺, 江锦波, 彭旭东. 多孔质机械密封耦合润滑模型与密封性能分析[J]. 化工学报, 2022, 73(10): 4576-4584. |
[14] | 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
[15] | 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 312
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||