化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3786-3796.DOI: 10.11949/0438-1157.20230544

• 流体力学与传递现象 • 上一篇    下一篇

耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究

李科(), 文键(), 忻碧平   

  1. 西安交通大学能源与动力工程学院,陕西 西安 710049
  • 收稿日期:2023-06-06 修回日期:2023-09-01 出版日期:2023-09-25 发布日期:2023-11-20
  • 通讯作者: 文键
  • 作者简介:李科(1992—),男,博士,助理教授,vincent_lee@xjtu.edu.cn
  • 基金资助:
    中国博士后科学基金项目(2022M722518)

Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank

Ke LI(), Jian WEN(), Biping XIN   

  1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2023-06-06 Revised:2023-09-01 Online:2023-09-25 Published:2023-11-20
  • Contact: Jian WEN

摘要:

基于MATLAB,构建了一种考虑氢储罐真空多层绝热结构、蒸气冷却屏和内部流体域的瞬态仿真模型。引入了无量纲的蒸气消耗因子ηc、休眠期延长因子ηs和单位因子ηηc代表冷却屏在储存全周期蒸气的消耗量,ηs代表采用冷却屏时休眠期相对于未采用时休眠期的延长量,ηηsηc的比值,代表冷却屏屏蔽漏热的能力。研究了冷却屏的无量纲位置、ηc、流量和开启时刻对ηsη的影响。结果表明,在冷却屏开启时段不变时,使得ηs最大化的冷却屏最佳位置是0.622;当冷却屏位置是0.622,ηc从0.0640降至0.0128,η增大34.7%,但是当冷却屏的设置偏离最佳位置越远,降低ηc使得η增大的幅度越小;固定ηc和蒸气冷却屏的开启时长,ηs随着开启时刻的推迟先增大后减小,当冷却屏的位置是0.622,使ηs最大的开启时刻是第23.26天。

关键词: 模型, 传热, 氢, 真空多层绝热, 蒸气冷却屏

Abstract:

Based on MATLAB program, a transient simulation model considering the vacuum multi-layer insulation, the vapor-cooled shield and the internal fluid domain of liquid hydrogen storage tank is constructed, which can be used to simulate the state change of the storage tank during the full cycle. The dimensionless vapor consumption factor ηc, dormancy extension factor ηs and unit factor η are introduced. ηc represents the vapor consumption of vapor-cooled shield during the full cycle of storage, ηs represents the extension of the dormancy period with vapor-cooled shield opened relative to that with vapor-cooled shield closed, and η is the ratio of ηs to ηc, representing the ability of vapor-cooled shield in shielding heat leakage. The effects of the dimensionless position of vapor-cooled shield, ηc, vapor flow rate and start-up time on ηs and η are investigated. The results show that the optimal position of vapor-cooled shield that maximizes ηs is 0.622 when the starting-up time of vapor-cooled shield is constant. Decreasing ηc helps to increase η. When the position of vapor-cooled shield is 0.622, and ηc decreases from 0.0640 to 0.0128, η increases by 34.7%. However, when the setting of the cooling screen deviates further from the optimal position, decreasing makes the increase smaller. When ηc and the duration time of vapor-cooled shield are fixed, ηs firstly increases then decreases with the delay of the start-up time. When the position of vapor-cooled shield is 0.622, the starting-up time that maximizes ηs is 23.26 d.

Key words: model, heat transfer, hydrogen, vacuum multi-layer insulation, vapor-cooled shield

中图分类号: