化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3094-3103.DOI: 10.11949/0438-1157.20190310
收稿日期:
2019-04-01
修回日期:
2019-05-09
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
玄伟伟
作者简介:
王浩男(1994—),男,硕士研究生,<email>s20170164@xs.ustb.edu.cn</email>
基金资助:
Haonan WANG(),Weiwei XUAN(),Dehong XIA
Received:
2019-04-01
Revised:
2019-05-09
Online:
2019-08-05
Published:
2019-08-05
Contact:
Weiwei XUAN
摘要:
采用热力学计算和分子动力学模拟方法研究了高铁煤灰熔体的结构特征以及结构随温度的变化规律,计算了不同温度下Fe3+和Fe2+的含量,分析了径向分布函数、配位数、键角、桥氧与非桥氧、Q n 结构单元等结构特征。热力学计算的结果显示温度升高有利于Fe3+转变成Fe2+,据此得到了Fe3+/Fe2+随温度的变化规律。在采用BMH势函数的基础上,分子动力学模拟显示熔体具有短程有序,长程无序的结构特征。随着温度升高,各离子对的径向分布函数曲线的高度和尖锐度下降,各离子的较高配位状态减少,较低配位状态增加,键角曲线的高度和锐度降低并向较小的方向移动,预示着离子的聚集程度减弱,熔体内部的无序化程度增强。氧的配位状态和Q n 的变化是熔体聚合度变化的直观反映,温度升高导致三配位氧和桥氧含量降低,非桥氧和自由氧含量增加,并最终导致较高聚合度的Q4结构单元解体生成较低聚合度的Q3、Q2、Q1和Q0结构单元。
中图分类号:
王浩男, 玄伟伟, 夏德宏. 不同温度下煤灰熔渣的结构演变规律[J]. 化工学报, 2019, 70(8): 3094-3103.
Haonan WANG, Weiwei XUAN, Dehong XIA. Structural evolution of coal ash slag at different temperatures[J]. CIESC Journal, 2019, 70(8): 3094-3103.
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
YZ | 40.41 | 16.58 | 26.14 | 13.77 | 1.73 | 0.65 | 0.23 | 0.48 |
YZ# | 40.41 | 16.58 | 26.14 | 13.77 | 0 | 0 | 0 | 0 |
初始 | 40 | 20 | 25 | 15 | 0 | 0 | 0 | 0 |
表1 煤灰的化学组成
Table 1 Chemical composition of coal ash/%
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
YZ | 40.41 | 16.58 | 26.14 | 13.77 | 1.73 | 0.65 | 0.23 | 0.48 |
YZ# | 40.41 | 16.58 | 26.14 | 13.77 | 0 | 0 | 0 | 0 |
初始 | 40 | 20 | 25 | 15 | 0 | 0 | 0 | 0 |
温度 | 氧化物/% | Fe3+/Fe2+ | ||||
---|---|---|---|---|---|---|
SiO2(g) | Al2O3(g) | Fe2O3(g) | FeO(g) | CaO(g) | ||
初始 | 40 | 20 | 25 | 0 | 15 | 0 |
1400℃ | 40 | 20 | 14.84 | 9.14 | 15 | 1.44 |
1450℃ | 40 | 20 | 13.09 | 10.72 | 15 | 1.08 |
1500℃ | 40 | 20 | 11.41 | 12.23 | 15 | 0.85 |
1550℃ | 40 | 20 | 9.86 | 13.63 | 15 | 0.64 |
1600℃ | 40 | 20 | 8.49 | 14.86 | 15 | 0.52 |
1650℃ | 40 | 20 | 7.31 | 15.92 | 15 | 0.41 |
1700℃ | 40 | 20 | 6.32 | 16.81 | 15 | 0.33 |
1750℃ | 40 | 20 | 5.49 | 17.56 | 15 | 0.28 |
1800℃ | 40 | 20 | 4.79 | 18.18 | 15 | 0.23 |
表2 不同温度下的熔体组成
Table 2 Melt composition at different temperatures
温度 | 氧化物/% | Fe3+/Fe2+ | ||||
---|---|---|---|---|---|---|
SiO2(g) | Al2O3(g) | Fe2O3(g) | FeO(g) | CaO(g) | ||
初始 | 40 | 20 | 25 | 0 | 15 | 0 |
1400℃ | 40 | 20 | 14.84 | 9.14 | 15 | 1.44 |
1450℃ | 40 | 20 | 13.09 | 10.72 | 15 | 1.08 |
1500℃ | 40 | 20 | 11.41 | 12.23 | 15 | 0.85 |
1550℃ | 40 | 20 | 9.86 | 13.63 | 15 | 0.64 |
1600℃ | 40 | 20 | 8.49 | 14.86 | 15 | 0.52 |
1650℃ | 40 | 20 | 7.31 | 15.92 | 15 | 0.41 |
1700℃ | 40 | 20 | 6.32 | 16.81 | 15 | 0.33 |
1750℃ | 40 | 20 | 5.49 | 17.56 | 15 | 0.28 |
1800℃ | 40 | 20 | 4.79 | 18.18 | 15 | 0.23 |
原子对 | 电荷 | Aij /eV | ρij /? | Cij /eV |
---|---|---|---|---|
Si-O | +1.8900 | 50307.43 | 0.161 | 46.30 |
Al-O | +1.4175 | 28539.14 | 0.172 | 34.58 |
Fe3+-O | +1.4175 | 8020.47 | 0.190 | 0 |
Fe2+-O | +0.9450 | 13033.26 | 0.190 | 0 |
Ca-O | +0.9450 | 155671.64 | 0.178 | 42.26 |
O-O | -0.9450 | 9023.03 | 0.265 | 85.09 |
表3 BMH势函数的相关参数[22]
Table 3 Related parameters of BMH potential function[22]
原子对 | 电荷 | Aij /eV | ρij /? | Cij /eV |
---|---|---|---|---|
Si-O | +1.8900 | 50307.43 | 0.161 | 46.30 |
Al-O | +1.4175 | 28539.14 | 0.172 | 34.58 |
Fe3+-O | +1.4175 | 8020.47 | 0.190 | 0 |
Fe2+-O | +0.9450 | 13033.26 | 0.190 | 0 |
Ca-O | +0.9450 | 155671.64 | 0.178 | 42.26 |
O-O | -0.9450 | 9023.03 | 0.265 | 85.09 |
键 | 键长/? | ||||
---|---|---|---|---|---|
MD | Ref.[24] | Ref.[25] | Ref.[27] | Ref.[22] | |
Si—O | 1.629 | 1.62~1.65 | 1.63 | — | 1.62~1.63 |
Al—O | 1.742 | 1.74~1.78 | 1.77~1.78 | — | 1.74~1.76 |
Fe3+—O | 1.842 | — | — | — | 1.82~1.84 |
Fe2+—O | 2.067 | — | — | 2.04~2.09 | 2.00~2.08 |
Ca—O | 2.382 | 2.30~2.36 | — | — | 2.37~2.40 |
表4 计算键长与文献数据对比
Table 4 Comparison of bond length value between data calculated by MD and references
键 | 键长/? | ||||
---|---|---|---|---|---|
MD | Ref.[24] | Ref.[25] | Ref.[27] | Ref.[22] | |
Si—O | 1.629 | 1.62~1.65 | 1.63 | — | 1.62~1.63 |
Al—O | 1.742 | 1.74~1.78 | 1.77~1.78 | — | 1.74~1.76 |
Fe3+—O | 1.842 | — | — | — | 1.82~1.84 |
Fe2+—O | 2.067 | — | — | 2.04~2.09 | 2.00~2.08 |
Ca—O | 2.382 | 2.30~2.36 | — | — | 2.37~2.40 |
氧的类型 | 温度/oC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | ||
BO | SiOSi | 21.81 | 21.98 | 21.98 | 23.11 | 21.74 | 22.00 | 22.09 | 21.61 | 22.77 |
SiOAl | 26.03 | 26.26 | 26.36 | 25.94 | 24.93 | 26.29 | 26.33 | 26.02 | 24.26 | |
SiO3Fe① | 8.34 | 7.11 | 6.70 | 4.96 | 4.97 | 4.45 | 3.53 | 3.26 | 2.76 | |
AlOAl | 5.38 | 4.96 | 5.29 | 5.35 | 5.11 | 5.28 | 5.09 | 5.40 | 5.38 | |
AlO3Fe | 3.15 | 3.14 | 2.57 | 2.19 | 1.79 | 1.53 | 1.37 | 1.16 | 1.15 | |
3FeO3Fe | 0.46 | 0.46 | 0.34 | 0.26 | 0.22 | 0.17 | 0.15 | 0.11 | 0.06 | |
TO | SiSiSi | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 |
SiSiAl | 0.27 | 0.24 | 0.32 | 0.29 | 0.38 | 0.30 | 0.35 | 0.46 | 0.33 | |
SiSi3Fe | 0.15 | 0.10 | 0.15 | 0.11 | 0.11 | 0.08 | 0.08 | 0.05 | 0.05 | |
SiAlAl | 0.74 | 0.91 | 0.68 | 0.91 | 0.88 | 0.95 | 0.83 | 0.99 | 0.98 | |
SiAl3Fe | 0.71 | 0.60 | 0.47 | 0.47 | 0.44 | 0.40 | 0.32 | 0.28 | 0.23 | |
Si3Fe3Fe | 0.14 | 0.10 | 0.12 | 0.08 | 0.06 | 0.04 | 0.03 | 0.01 | 0.02 | |
AlAlAl | 0.37 | 0.37 | 0.31 | 0.33 | 0.48 | 0.46 | 0.38 | 0.40 | 0.43 | |
AlAl3Fe | 0.48 | 0.40 | 0.29 | 0.35 | 0.19 | 0.16 | 0.14 | 0.11 | 0.13 | |
Al3Fe3Fe | 0.17 | 0.17 | 0.10 | 0.08 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | |
3Fe3Fe3Fe | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
NBO | SiO | 22.04 | 22.70 | 24.24 | 24.75 | 27.09 | 26.82 | 27.41 | 28.25 | 29.36 |
AlO | 6.12 | 6.67 | 6.68 | 7.19 | 7.51 | 7.28 | 8.03 | 7.87 | 8.18 | |
3FeO | 1.72 | 1.86 | 1.48 | 1.40 | 1.36 | 1.18 | 1.17 | 1.02 | 0.82 | |
FO | FO | 1.88 | 1.94 | 1.88 | 2.21 | 2.67 | 2.57 | 2.66 | 2.92 | 3.03 |
表5 氧的配位情况
Table 5 Oxygen coordination
氧的类型 | 温度/oC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | ||
BO | SiOSi | 21.81 | 21.98 | 21.98 | 23.11 | 21.74 | 22.00 | 22.09 | 21.61 | 22.77 |
SiOAl | 26.03 | 26.26 | 26.36 | 25.94 | 24.93 | 26.29 | 26.33 | 26.02 | 24.26 | |
SiO3Fe① | 8.34 | 7.11 | 6.70 | 4.96 | 4.97 | 4.45 | 3.53 | 3.26 | 2.76 | |
AlOAl | 5.38 | 4.96 | 5.29 | 5.35 | 5.11 | 5.28 | 5.09 | 5.40 | 5.38 | |
AlO3Fe | 3.15 | 3.14 | 2.57 | 2.19 | 1.79 | 1.53 | 1.37 | 1.16 | 1.15 | |
3FeO3Fe | 0.46 | 0.46 | 0.34 | 0.26 | 0.22 | 0.17 | 0.15 | 0.11 | 0.06 | |
TO | SiSiSi | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 |
SiSiAl | 0.27 | 0.24 | 0.32 | 0.29 | 0.38 | 0.30 | 0.35 | 0.46 | 0.33 | |
SiSi3Fe | 0.15 | 0.10 | 0.15 | 0.11 | 0.11 | 0.08 | 0.08 | 0.05 | 0.05 | |
SiAlAl | 0.74 | 0.91 | 0.68 | 0.91 | 0.88 | 0.95 | 0.83 | 0.99 | 0.98 | |
SiAl3Fe | 0.71 | 0.60 | 0.47 | 0.47 | 0.44 | 0.40 | 0.32 | 0.28 | 0.23 | |
Si3Fe3Fe | 0.14 | 0.10 | 0.12 | 0.08 | 0.06 | 0.04 | 0.03 | 0.01 | 0.02 | |
AlAlAl | 0.37 | 0.37 | 0.31 | 0.33 | 0.48 | 0.46 | 0.38 | 0.40 | 0.43 | |
AlAl3Fe | 0.48 | 0.40 | 0.29 | 0.35 | 0.19 | 0.16 | 0.14 | 0.11 | 0.13 | |
Al3Fe3Fe | 0.17 | 0.17 | 0.10 | 0.08 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | |
3Fe3Fe3Fe | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
NBO | SiO | 22.04 | 22.70 | 24.24 | 24.75 | 27.09 | 26.82 | 27.41 | 28.25 | 29.36 |
AlO | 6.12 | 6.67 | 6.68 | 7.19 | 7.51 | 7.28 | 8.03 | 7.87 | 8.18 | |
3FeO | 1.72 | 1.86 | 1.48 | 1.40 | 1.36 | 1.18 | 1.17 | 1.02 | 0.82 | |
FO | FO | 1.88 | 1.94 | 1.88 | 2.21 | 2.67 | 2.57 | 2.66 | 2.92 | 3.03 |
1 | 袁悦婷, 袁秋华, 李伟斌, 等 . 煤气化技术及气化炉实际应用现状综述[J]. 化工设计通讯, 2019, 45(1): 15+44. |
Yuan Y T , Yuan Q H , Li W B , et al . Summary of actual application status of coal gasification technology and gasifier[J]. Chemical Engineering Design Communications, 2019, 45(1): 15+44. | |
2 | 王殿生 .大型煤气化技术的研究与发展[J]. 化工设计通讯, 2018, 44(2): 11. |
Wang D S . Research and development of large-scale coal gasification technology[J]. Chemical Engineering Design Communications, 2018, 44(2): 11. | |
3 | 李文, 白进 . 煤的灰化学[M]. 北京: 科学出版社, 2013. |
Li W , Bai J . Coal Ash Chemistry[M]. Beijing: Science Press, 2013. | |
4 | Liao J , Zhang Y , Sridhar S , et al . Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags[J]. ISIJ International, 2012, 52(5): 753-758. |
5 | Zhang S , Zhang X , Liu W , et al . Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag[J]. Journal of Non-Crystalline Solids, 2014, 402: 214-222. |
6 | Wu T , He S , Liang Y , et al . Molecular dynamics simulation of the structure and properties for the CaO–SiO2 and CaO–Al2O3 systems[J]. Journal of Non-Crystalline Solids, 2015, 411: 145-151. |
7 | Xuan W , Zhang J , Xia D . The influence of MgO on the crystallization characteristics of synthetic coal slags[J]. Fuel, 2018, 222: 523-528. |
8 | Xuan W , Wang Q , Zhang J , et al . Influence of silica and alumina (SiO2+Al2O3) on crystallization characteristics of synthetic coal slags[J]. Fuel, 2017, 189: 39-45. |
9 | Xuan W , Whitty K J , Guan Q , et al . Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags[J]. Fuel, 2015, 144: 103-110. |
10 | Xuan W W , Wang H N , Xia D H . Deep structure analysis on coal slags with increasing silicon content and correlation with melt viscosity[J]. Fuel, 2019, 242: 362-367. |
11 | Xuan W W , Wang H N , Xia D H . Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Process. Technol., 2019, 187: 21-27. |
12 | Wang C H , Lin X C , Sa-Sha Y , et al . Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeO x quaternary system[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1025-1033. |
13 | Knipping J L , Behrens H , Wilke M , et al . Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts[J]. Chemical Geology, 2015, 411: 143-154. |
14 | Lin X , Ideta K , Miyawaki J , et al . Correlation between fluidity properties and local structures of three typical Asian coal ashes[J]. Energy & Fuels, 2012, 26(4): 2136-2144. |
15 | Jiang Y , Lin X , Ideta K , et al . Microstructural transformations of two representative slags at high temperatures and effects on the viscosity[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1338-1345. |
16 | Bale C W , Bélisle E , Chartrand P , et al . FactSage thermochemical software and databases — recent developments[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33(2): 295-311. |
17 | 王锦团, 张乐, 任钟元, 等 . 气体混合炉中氧逸度控制[J]. 地球化学, 2016, 45: 475-485. |
Wang J T , Zhang L , Ren Z Y , et al . Oxygen fugacity control in gas mixing furnace[J]. Geochemistry, 2016, 45: 475-485. | |
18 | Jayasuriya K D , OʼNeill H , St C , Berry A J ,et al . A Mössbauer study of the oxidation state of Fe in silicate melts[J]. American Mineralogist, 2015, 89(11): 1597-1609 |
19 | Sack R O , Carmichael I S E , Rivers M , et al . Ferric-ferrous equilibria in natural silicate liquids at 1 bar[J]. Contributions to Mineralogy & Petrology, 1981, 75(4): 369-376. |
20 | Knipping J L , Behrens H , Wilke M , et al . Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts[J]. Chemical Geology, 2015, 411: 143-154. |
21 | Karalis K T , Dellis D , Antipas G S E , et al . Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag[J]. Scientific Reports, 2016, 6: 30216. |
22 | Guillot B , Sator N . A computer simulation study of natural silicate melts (Ⅰ): Low pressure properties[J]. Geochimica et Cosmo-chimica Acta, 2007, 71(5): 1249-1265. |
23 | 严六明, 朱素华 . 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013. |
Yan L M , Zhu S H . Theory and Practice of Molecular Dynamics Simulation[M]. Beijing: Science Press, 2013 | |
24 | Hennet L , Drewitt J W E , Neuville D R , et al . Neutron diffraction of calcium aluminosilicate glasses and melts[J]. Journal of Non-Crystalline Solids, 2016, 451: 89-93. |
25 | Wagner J , Haigis V , Leydier M , et al . The structure of Y- and La-bearing aluminosilicate glasses and melts: a combined molecular dynamics and diffraction study[J]. Chemical Geology, 2016, 461: 23-33. |
26 | Wu T , Wang Q , Yu C , et al . Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. Journal of Non-Crystalline Solids, 2016, 450: 23-31. |
27 | 徐利莹, 王秀丽, 吴永全, 等 . 铝硅酸钙熔体中氧原子的配位性质及动力学[J]. 硅酸盐学报, 2006, (9): 1117-1123. |
Xu L Y , Wang X L , Wu Y Q , et al . Coordination properties and kinetics of oxygen atoms in calcium aluminosilicate melts[J]. Journal of Silicate, 2006, (9): 1117-1123. | |
28 | Mills K C , Hayashi M , Wang L , et al . Chapter 2.2—the structure and properties of silicate slags[J]. Treatise on Process Metallurgy, 2014, 14(8): 149-286. |
29 | Mills K C . The estimation of slag properties[D]. London: Imperial College, 2011. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[9] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[12] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[13] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[14] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[15] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||