化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2935-2946.DOI: 10.11949/0438-1157.20230207
陈吉1(), 洪泽3, 雷昭1,2(), 凌强1,2, 赵志刚1,2, 彭陈辉3, 崔平1,2()
收稿日期:
2023-03-08
修回日期:
2023-07-06
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
雷昭,崔平
作者简介:
陈吉(1993—),男,博士研究生,chenjiahut@126.com
基金资助:
Ji CHEN1(), Ze HONG3, Zhao LEI1,2(), Qiang LING1,2, Zhigang ZHAO1,2, Chenhui PENG3, Ping CUI1,2()
Received:
2023-03-08
Revised:
2023-07-06
Online:
2023-07-05
Published:
2023-08-31
Contact:
Zhao LEI, Ping CUI
摘要:
为从分子层面研究焦炭溶损反应及其机理,借助分子动力学和第一性原理构建了一种包含石墨化碳和非石墨化碳的焦炭分子模型,研究了电荷密度和孔径大小对焦炭溶损反应及其机理的影响,并通过实验对模拟结果加以验证。结果表明,所建模型真密度在焦炭实测密度范围内;焦炭石墨化程度越高,碳原子周边电荷密度越小,其溶损反应程度越低,实验结果与模拟结果相近;CO2在孔径大于50 Å(1 Å=1×10-10 m)气孔内以扩散为主,其扩散表观活化能最小,为131.24 kJ/mol;在孔径小于2 Å气孔内以吸附为主,其吸附能的绝对值最大,为192.54 kJ/mol;焦炭溶损反应机理包括焦炭分子生成石墨化碳和非石墨化碳原子的裂解反应、碳原子之间的异构化反应以及碳原子与CO2的氧化反应,在氧化反应过程中,碳原子与CO2反应生成的烯酮式结构会因其稳定性差裂解成CO,完成反应过程。
中图分类号:
陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946.
Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations[J]. CIESC Journal, 2023, 74(7): 2935-2946.
样品编号 | JM/kg | FM/kg | 1/3JM/kg | SM/kg | QM/kg | Ad/% | Vdaf/% | St,d/% | G | Y/mm |
---|---|---|---|---|---|---|---|---|---|---|
c1 | 28 | 11 | 17 | 7 | 7 | 9.30 | 28.27 | 0.83 | 80 | 16.4 |
c2 | 28 | 11 | 15 | 7 | 9 | 9.42 | 28.85 | 0.84 | 79 | 16.1 |
c3 | 28 | 11 | 13 | 7 | 11 | 9.61 | 29.34 | 0.86 | 76 | 15.6 |
c4 | 28 | 11 | 10 | 7 | 14 | 9.74 | 29.78 | 0.89 | 77 | 15.2 |
表1 配煤及基本性质
Table 1 Schemes of blending coal and quality of blending coal
样品编号 | JM/kg | FM/kg | 1/3JM/kg | SM/kg | QM/kg | Ad/% | Vdaf/% | St,d/% | G | Y/mm |
---|---|---|---|---|---|---|---|---|---|---|
c1 | 28 | 11 | 17 | 7 | 7 | 9.30 | 28.27 | 0.83 | 80 | 16.4 |
c2 | 28 | 11 | 15 | 7 | 9 | 9.42 | 28.85 | 0.84 | 79 | 16.1 |
c3 | 28 | 11 | 13 | 7 | 11 | 9.61 | 29.34 | 0.86 | 76 | 15.6 |
c4 | 28 | 11 | 10 | 7 | 14 | 9.74 | 29.78 | 0.89 | 77 | 15.2 |
样品编号 | 性质/%(质量分数) | |||||
---|---|---|---|---|---|---|
Ad | Vdaf | M40 | M10 | CRI | CSR | |
c1 | 12.59 | 1.06 | 78.2 | 6.3 | 22.9 | 60.7 |
c2 | 12.61 | 1.08 | 76.7 | 6.5 | 23.3 | 60.2 |
c3 | 12.65 | 1.07 | 75.2 | 6.7 | 23.8 | 59.9 |
c4 | 12.73 | 1.05 | 74.3 | 6.7 | 24.3 | 59.4 |
表2 四种焦炭的基本性质
Table 2 Basic properties of four kinds of coke
样品编号 | 性质/%(质量分数) | |||||
---|---|---|---|---|---|---|
Ad | Vdaf | M40 | M10 | CRI | CSR | |
c1 | 12.59 | 1.06 | 78.2 | 6.3 | 22.9 | 60.7 |
c2 | 12.61 | 1.08 | 76.7 | 6.5 | 23.3 | 60.2 |
c3 | 12.65 | 1.07 | 75.2 | 6.7 | 23.8 | 59.9 |
c4 | 12.73 | 1.05 | 74.3 | 6.7 | 24.3 | 59.4 |
样品编号 | 含量/%(质量分数) | |||||
---|---|---|---|---|---|---|
Cd | Hd | Od① | Nd | Sd | Pd | |
c1 | 97.04 | 0.56 | 0.49 | 1.11 | 0.79 | 0.01 |
c2 | 97.18 | 0.49 | 0.54 | 0.99 | 0.78 | 0.02 |
c3 | 97.20 | 0.51 | 0.50 | 1.02 | 0.76 | 0.01 |
c4 | 97.17 | 0.54 | 0.48 | 1.04 | 0.75 | 0.02 |
表3 四种焦炭的元素分析
Table 3 Element analysis of four coke
样品编号 | 含量/%(质量分数) | |||||
---|---|---|---|---|---|---|
Cd | Hd | Od① | Nd | Sd | Pd | |
c1 | 97.04 | 0.56 | 0.49 | 1.11 | 0.79 | 0.01 |
c2 | 97.18 | 0.49 | 0.54 | 0.99 | 0.78 | 0.02 |
c3 | 97.20 | 0.51 | 0.50 | 1.02 | 0.76 | 0.01 |
c4 | 97.17 | 0.54 | 0.48 | 1.04 | 0.75 | 0.02 |
项目 | 石墨化碳 | 非石墨化碳 |
---|---|---|
实验值 | 72.1% | 27.9% |
模拟值 | 71.5% | 28.5% |
误差 | -0.83% | 2.15% |
表4 分子模型、焦炭中石墨化碳原子与非石墨化碳原子含量对比
Table 4 Contents of graphitized carbon atoms and non-graphitized carbon atoms in the model and coke
项目 | 石墨化碳 | 非石墨化碳 |
---|---|---|
实验值 | 72.1% | 27.9% |
模拟值 | 71.5% | 28.5% |
误差 | -0.83% | 2.15% |
类别 | 0~5 Å/% | 5~10 Å/% | 10~15 Å/% | 15~25 Å/% |
---|---|---|---|---|
5A | 54.21 | 45.79 | 0 | 0 |
5B | 61.79 | 33.21 | 3.57 | 1.43 |
5C | 65.61 | 25.39 | 5.11 | 3.89 |
表5 三种模型的气孔大小与分布
Table 5 Pore size distribution of three models
类别 | 0~5 Å/% | 5~10 Å/% | 10~15 Å/% | 15~25 Å/% |
---|---|---|---|---|
5A | 54.21 | 45.79 | 0 | 0 |
5B | 61.79 | 33.21 | 3.57 | 1.43 |
5C | 65.61 | 25.39 | 5.11 | 3.89 |
基元反应 | 频率 |
---|---|
cokesp3C | 104 |
cokesp2C | 67 |
sp3C—sp3C 2sp3C | 89 |
2sp3C sp2C | 7 |
sp2C sp2C sp3C + sp2C | 8 |
sp3C + CO2 sp3CO + CO | 38 |
sp2C + CO2 sp2CO + CO | 11 |
sp3C + CO2 sp3CCO | 94 |
sp2C + CO2 sp2CCO | 36 |
sp3CCO sp3C + CO | 92 |
sp2CCO sp2C + CO | 31 |
表6 焦炭溶损反应机理
Table 6 Reaction mechanisms of coke solution loss
基元反应 | 频率 |
---|---|
cokesp3C | 104 |
cokesp2C | 67 |
sp3C—sp3C 2sp3C | 89 |
2sp3C sp2C | 7 |
sp2C sp2C sp3C + sp2C | 8 |
sp3C + CO2 sp3CO + CO | 38 |
sp2C + CO2 sp2CO + CO | 11 |
sp3C + CO2 sp3CCO | 94 |
sp2C + CO2 sp2CCO | 36 |
sp3CCO sp3C + CO | 92 |
sp2CCO sp2C + CO | 31 |
样品 | 状态 | 2θ002/(o) | d002/nm | La/nm | Lc/nm | 石墨化度 |
---|---|---|---|---|---|---|
c1 | 反应前 | 26.41 | 0.34 | 5.81 | 3.07 | 0.62 |
失重30% | 26.38 | 0.34 | 6.19 | 3.01 | 0.71 | |
c2 | 反应前 | 26.03 | 0.34 | 5.76 | 2.62 | 0.61 |
失重30% | 26.26 | 0.34 | 5.56 | 2.68 | 0.69 | |
c3 | 反应前 | 26.30 | 0.34 | 6.23 | 3.46 | 0.63 |
失重30% | 26.37 | 0.34 | 6.07 | 3.58 | 0.71 | |
c4 | 反应前 | 26.22 | 0.34 | 5.01 | 2.46 | 0.60 |
失重30% | 26.27 | 0.34 | 5.31 | 2.62 | 0.72 |
表7 焦炭的晶格参数
Table 7 Lattice parameters of coke
样品 | 状态 | 2θ002/(o) | d002/nm | La/nm | Lc/nm | 石墨化度 |
---|---|---|---|---|---|---|
c1 | 反应前 | 26.41 | 0.34 | 5.81 | 3.07 | 0.62 |
失重30% | 26.38 | 0.34 | 6.19 | 3.01 | 0.71 | |
c2 | 反应前 | 26.03 | 0.34 | 5.76 | 2.62 | 0.61 |
失重30% | 26.26 | 0.34 | 5.56 | 2.68 | 0.69 | |
c3 | 反应前 | 26.30 | 0.34 | 6.23 | 3.46 | 0.63 |
失重30% | 26.37 | 0.34 | 6.07 | 3.58 | 0.71 | |
c4 | 反应前 | 26.22 | 0.34 | 5.01 | 2.46 | 0.60 |
失重30% | 26.27 | 0.34 | 5.31 | 2.62 | 0.72 |
1 | 吕青青, 周俊兰, 王光辉, 等. 高炉风口焦炭的形貌与冶金行为[J]. 钢铁, 2021, 56(10): 45-53. |
Lv Q Q, Zhou J L, Wang G H, et al. Morphology and metallurgical behavior of coke at tuyere of blast furnace[J]. Iron and Steel, 2021, 56(10): 45-53. | |
2 | Wang M C, Wei G S, Yang S F, et al. Effect of alkali (K/Na) metal vapor on the metallurgical properties of coke in CO2-O2-N2 mixed atmosphere[J]. Energy, 2022, 257: 124748. |
3 | Wang Q, Guo R, Zhao X F, et al. A new testing and evaluating method of cokes with greatly varied CRI and CSR[J]. Fuel, 2016, 182: 879-885. |
4 | Huang J C, Guo R, Wang Q, et al. Coke solution-loss degradation model with non-equimolar diffusion and changing local pore structure[J]. Fuel, 2020, 263: 116694. |
5 | Kumar D, Saxena V K, Tiwari H P, et al. Variability in metallurgical coke reactivity index (CRI) and coke strength after reaction (CSR): an experimental study[J]. ACS Omega, 2022, 7(2): 1703-1711. |
6 | Klika Z, Serenčíšová J, Kolomazník I, et al. Prediction of CRI and CSR of cokes by two-step correction models for stamp-charged coals—statistical analysis[J]. Fuel, 2020, 262: 116623. |
7 | Zhao J, Zuo H B, Ling C, et al. Microstructure evolution of coke under CO2 and H2O atmospheres[J]. Journal of Iron and Steel Research International, 2020, 27(7): 743-754. |
8 | Hilding T, Gupta S, Sahajwalla V, et al. Degradation behaviour of a high CSR coke in an experimental blast furnace: effect of carbon structure and alkali reactions[J]. ISIJ International, 2005, 45(7): 1041-1050. |
9 | Wang W, Dai B W, Xu R S, et al. The effect of H2O on the reactivity and microstructure of metallurgical coke[J]. Steel Research International, 2017, 88(8): 1700063. |
10 | Niu Q, Cheng S S, Xu W X, et al. Analysis of the coke particle size distribution and porosity of deadman based on blast furnace hearth dissection[J]. ISIJ International, 2019, 59(11): 1997-2004. |
11 | 黄逸群, 张缦, 单露, 等. 干馏条件对油页岩半焦孔隙结构的影响[J]. 化工学报, 2017, 68(10): 3870-3876. |
Huang Y Q, Zhang M, Shan L, et al. Effects of retorting conditions on pore structure of oil shale semi coke[J]. CIESC Journal, 2017, 68(10): 3870-3876. | |
12 | 崔平, 张磊, 杨敏, 等. 焦炭溶损反应动力学及其模型研究[J]. 燃料化学学报, 2006, 34(3): 280-284. |
Cui P, Zhang L, Yang M, et al. Study on kinetics and model of coke loss reaction with CO2 in blast furnace[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 280-284. | |
13 | 丁子昭. 焦炭溶损反应机理的分子动力学研究[D]. 唐山: 华北理工大学, 2021. |
Ding Z Z. Molecular dynamics study on the reaction mechanism of coke dissolution loss[D]. Tangshan: North China University of Science and Technology, 2021. | |
14 | Li K J, Zhang H, Li G Y, et al. ReaxFF molecular dynamics simulation for the graphitization of amorphous carbon: a parametric study[J]. Journal of Chemical Theory and Computation, 2018, 14(5): 2322-2331. |
15 | 田妍. 平遥焦炭微观结构的分子动力学研究[D]. 唐山: 华北理工大学, 2020. |
Tian Y. Molecular dynamics study on microstructure of Pingyao coke[D]. Tangshan: North China University of Science and Technology, 2020. | |
16 | Li K J, Li H T, Sun M M, et al. Atomic-scale understanding about coke carbon structural evolution by experimental characterization and ReaxFF molecular dynamics[J]. Energy & Fuels, 2019, 33(11): 10941-10952. |
17 | Marsusi F, Drummond N D, Verstraete M J. The physics of single-side fluorination of graphene: DFT and DFT + U studies[J]. Carbon, 2019, 144: 615-627. |
18 | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
Zheng M, Li X X. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741. | |
19 | 袁妮妮, 郭拓, 白红存, 等. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
Yuan N N, Guo T, Bai H C, et al. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061. | |
20 | Ge Z P, Wang Y. Estimation of nanodiamond surface charge density from zeta potential and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3394-3402. |
21 | Yang K Z, Yang G, Wu J Y. Insights into the enhancement of CO2 adsorption on faujasite with a low Si/Al ratio: understanding the formation sequence of adsorption complexes[J]. Chemical Engineering Journal, 2021, 404: 127056. |
22 | Chenoweth K, van Duin A C T, Dasgupta S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746. |
23 | 马生贵, 田博文, 周雨薇, 等. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
Ma S G, Tian B W, Zhou Y W, et al. DFT study of adsorption of H2S on N-doped stone-wales defected graphene[J]. CIESC Journal, 2021, 72(9): 4496-4503. | |
24 | 玄伟伟, 董彦吾, 王海轮. 基于ReaxFF-MD和DFT的废旧PP塑料水蒸气气化机理研究[J]. 化工学报, 2022, 73(11): 5251-5262. |
Xuan W W, Dong Y W, Wang H L. Study on the steam gasification mechanism of waste PP plastics based on ReaxFF-MD and DFT methods[J]. CIESC Journal, 2022, 73(11): 5251-5262. | |
25 | 俞夏琪, 冯格, 赵金燕, 等. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
Yu X Q, Feng G, Zhao J Y, et al. A first-principles study of the interaction between TDI-TMP-T313 and AP[J]. CIESC Journal, 2022, 73(8): 3511-3517. | |
26 | 刘佳, 姜桂元, 赵震, 等. Pt/TiO2/ZSM-5催化剂的制备及其催化转化正丁烷[J]. 化工学报, 2016, 67(8): 3363-3373. |
Liu J, Jiang G Y, Zhao Z, et al. Preparation of Pt/TiO2/ZSM-5 catalyst for catalytic conversion of n-butane[J]. CIESC Journal, 2016, 67(8): 3363-3373. | |
27 | Lei Z, Jiang J, Zhu G L, et al. Investigate the adsorption behavior of CO2 on char-inorganic compound model for coal gasification[J]. Energy & Fuels, 2016, 30(2): 1287-1293. |
28 | Mori A, Kubo S, Kudo S, et al. Preparation of high-strength coke by carbonization of hot-briquetted Victorian brown coal[J]. Energy & Fuels, 2012, 26(1): 296-301. |
29 | 李佳, 梁贞菊, 王照亮, 等. 不同分子模型对甲烷水合物分解微观特性表征[J]. 化工学报, 2020, 71(3): 955-964. |
Li J, Liang Z J, Wang Z L, et al. Characterization of microscopic nature of methane hydrate decomposition by different molecular models[J]. CIESC Journal, 2020, 71(3): 955-964. | |
30 | Savvatimskiy A I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963—2003)[J]. Carbon, 2005, 43(6): 1115-1142. |
31 | Wang X Y, Han T C, Fu L Y. Anisotropic elastic properties of montmorillonite with different layer charge densities and layer charge distributions through molecular dynamic simulation[J]. Frontiers in Earth Science, 2022, 10: 854816. |
32 | Peng C L, Song L L, Wang L, et al. Effect of surface charge distribution of phosphorus-doped MoS2 on hydrogen evolution reaction[J]. ACS Applied Energy Materials, 2021, 4(5): 4887-4896. |
33 | Zhao H M, Wu M M, Wang Q, et al. Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters[J]. Physica B: Condensed Matter, 2011, 406(22): 4322-4326. |
34 | Yan S S, Chen H R, Zhu H N, et al. Enhanced adsorption of bio-oil on activated biochar in slurry fuels and the adsorption selectivity[J]. Fuel, 2023, 338: 127224. |
35 | Taheri Z, Pour A N. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2021, 27(2): 59. |
36 | Furuya K, Hama T, Oba Y, et al. Diffusion activation energy and desorption activation energy for astrochemically relevant species on water ice show no clear relation[J]. The Astrophysical Journal Letters, 2022, 933(1): L16. |
37 | Li B, Li X, Gao W, et al. An effective scheme to determine surface energy and its relation with adsorption energy[J]. Acta Materialia, 2021, 212: 116895. |
38 | Lei Z, Yan J C, Xie R L, et al. Catalysis mechanism of solution loss reaction of metallurgical coke in blast furnace: experimental and modeling study[J]. Fuel, 2021, 290: 120025. |
39 | Tan M, Li T, Wang Z H, et al. Investigation on adsorption of sodium fluoro-aluminates on graphite by density functional theory[J]. Journal of Molecular Liquids, 2023, 373: 121252. |
40 | 湛文龙, 孙崇, 余盈昌, 等. 高炉焦炭石墨化过程中的微观组织和冶金性能演变[J]. 工程科学学报, 2018, 40(6): 690-696. |
Zhan W L, Sun C, Yu Y C, et al. Evolution of coke microstructure and metallurgical properties during graphitization in a blast furnace[J]. Chinese Journal of Engineering, 2018, 40(6): 690-696. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[11] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||