化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2806-2818.doi: 10.11949/0438-1157.20220418

• 综述与专论 • 上一篇    下一篇

水系有机液流电池活性材料的分子工程研究进展

李彬1,3(),宋文明1,杨坤龙1,姜爽1,3(),张天永1,2,3()   

  1. 1.天津大学化工学院,天津市应用催化科学与工程重点实验室,天津 300354
    2.天津化学化工协同创新中心,天津 300072
    3.天津市功能精细化学品技术工程中心,天津 300354
  • 收稿日期:2022-03-25 修回日期:2022-04-26 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 姜爽,张天永 E-mail:libin@tju.edu.cn;shuangjiang@tju.edu.cn;tyzhang@tju.edu.cn
  • 作者简介:李彬(1982—),男,博士,副教授,libin@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21908161);天津市自然科学基金项目(21JCQNJC00610)

Molecular engineering research progress of active materials for aqueous organic flow batteries

Bin LI1,3(),Wenming SONG1,Kunlong YANG1,Shuang JIANG1,3(),Tianyong ZHANG1,2,3()   

  1. 1.Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
    2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
    3.Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
  • Received:2022-03-25 Revised:2022-04-26 Published:2022-07-05 Online:2022-08-01
  • Contact: Shuang JIANG,Tianyong ZHANG E-mail:libin@tju.edu.cn;shuangjiang@tju.edu.cn;tyzhang@tju.edu.cn

摘要:

氧化还原液流电池(RFB)是有良好发展前景的电化学储能技术和大规模可再生能源存储的有效解决方案,其中水系有机氧化还原液流电池(AORFB)不仅成本低,还可以通过分子工程进行活性材料的理性设计,从而高效率地得到具有精准目标性能的新型活性材料。综述了AORFB活性材料的发展历程和研究现状,重点对不同结构活性材料的分子工程研究进行介绍。结合当前研究趋势,提出了活性材料分子工程研究未来发展的方向与思路。

关键词: 水系有机液流电池, 电化学, 电解质, 再生能源, 分子工程

Abstract:

Redox flow battery (RFB) is a promising electrochemical energy storage technology and an effective solution for large-scale renewable energy storage. Among them, aqueous organic redox flow battery (AORFB) is not only cost effective, but also its active materials could be rationally designed by molecular engineering, so as to efficiently obtain new active materials with accurate target properties. The development history and research status of AORFB active materials are reviewed, and the molecular engineering research of active materials with different structures is mainly introduced. Combined with the current research trends, the future development direction and ideas of active material molecular engineering research are proposed.

Key words: aqueous organic flow battery, electrochemistry, electrolytes, renewable energy, molecular engineering

中图分类号: 

  • TQ 152
1 杜祥琬. 碳达峰与碳中和引领能源革命[J]. 科学大观园, 2021 (19): 78.
Du X W. Carbon peaking and carbon neutrality lead the energy revolution[J]. Grand Garden of Science, 2021 (19): 78.
2 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10.
Zou C N, Zhao Q, Zhang G S, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10.
3 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
Zhou X X, Lu Z X, Liu Y M, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
4 黎淑娟, 李爱魁, 黄际元, 等. 储能在高占比可再生能源系统中的应用及关键技术[J]. 供用电, 2020, 37(2): 3-7, 40.
Li S J, Li A K, Huang J Y, et al. The application and key technologies of energy storage in high-proportion renewable energy systems[J]. Distribution & Utilization, 2020, 37(2): 3-7, 40.
5 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25, 102.
Ding M, Chen Z, Su J H, et al. An overview of battery energy storage system for renewable energy generation[J]. Automation of Electric Power Systems, 2013, 37(1): 19-25, 102.
6 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
Li X F, Zhang H Z, Zheng Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
7 Thaller L H. Electrically rechargeable redox flow cell: US3996064[P]. 1976-12-07.
8 Liu W Q, Lu W J, Zhang H M, et al. Aqueous flow batteries: research and development[J]. Chemistry - A European Journal, 2019, 25(7): 1649-1664.
9 Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage[J]. Journal of Power Sources, 2021, 481: 228804.
10 彭康, 刘俊敏, 唐珙根, 等. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263.
Peng K, Liu J M, Tang G G, et al. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263.
11 尤东江, 魏津云, 李雪菁, 等. 基于框架设计的液流电池流场优化模拟研究[J]. 化工学报, 2019, 70(11): 4437-4448.
You D J, Wei J Y, Li X J, et al. Simulation study on flow field optimization of flow battery based on flow frame design[J]. CIESC Journal, 2019, 70(11): 4437-4448.
12 Winsberg J, Hagemann T, Janoschka T, et al. Redox-flow batteries: from metals to organic redox-active materials[J]. Angewandte Chemie International Edition, 2017, 56(3): 686-711.
13 Wei X L, Pan W X, Duan W T, et al. Materials and systems for organic redox flow batteries: status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204.
14 王翔. 全有机氧化还原液流电池混合溶剂和支持电解质的研究[D]. 天津: 天津大学, 2018.
Wang X. Mixed solvents and supporting electrolytes for all-organic redox flow batteries[D]. Tianjin: Tianjin University, 2018.
15 Zhang C K, Zhang L Y, Ding Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350.
16 Han C P, Li H F, Shi R Y, et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges[J]. Journal of Materials Chemistry A, 2019, 7(41): 23378-23415.
17 Yang B, Hoober-Burkhardt L, Wang F, et al. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples[J]. Journal of the Electrochemical Society, 2014, 161(9): A1371-A1380.
18 Yang B, Hoober-Burkhardt L, Krishnamoorthy S, et al. High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes[J]. Journal of the Electrochemical Society, 2016, 163(7): A1442-A1449.
19 Hoober-Burkhardt L, Krishnamoorthy S, Yang B, et al. A new Michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries[J]. Journal of the Electrochemical Society, 2017, 164(4): A600-A607.
20 Murali A, Nirmalchandar A, Krishnamoorthy S, et al. Understanding and mitigating capacity fade in aqueous organic redox flow batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1193-A1203.
21 Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198.
22 Lin K X, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532.
23 Yang Z J, Tong L C, Tabor D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018, 8(8): 1702056.
24 Kwabi D G, Lin K X, Ji Y L, et al. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906.
25 Ji Y L, Goulet M A, Pollack D A, et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Advanced Energy Materials, 2019, 9(12): 1900039.
26 Jin S J, Jing Y, Kwabi D G, et al. A water-miscible quinone flow battery with high volumetric capacity and energy density[J]. ACS Energy Letters, 2019, 4(6): 1342-1348.
27 Chai J C, Wang X, Lashgari A, et al. A pH-neutral, aqueous redox flow battery with a 3600-cycle lifetime: micellization-enabled high stability and crossover suppression[J]. ChemSusChem, 2020, 13(16): 4069-4077.
28 Luo J, Hu B, Debruler C, et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries[J]. Joule, 2019, 3(1): 149-163.
29 Hu B, Luo J, Hu M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie International Edition, 2019, 58(46): 16629-16636.
30 Ding Y, Li Y F, Yu G H. Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study[J]. Chem, 2016, 1(5): 790-801.
31 Wang C X, Yang Z, Wang Y R, et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1,4-naphthoquinone[J]. ACS Energy Letters, 2018, 3(10): 2404-2409.
32 Lee W, Park G, Kwon Y. Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives[J]. Chemical Engineering Journal, 2020, 386: 123985.
33 Tong L C, Goulet M A, Tabor D P, et al. Molecular engineering of an alkaline naphthoquinone flow battery[J]. ACS Energy Letters, 2019, 4(8): 1880-1887.
34 吕腾, 叶子祥, 李泾, 等. 烷基磺酸蒽醌电解质的合成及其在液流电池中的应用[J]. 储能科学与技术, 2021, 10(4): 1317-1324.
Lyu T, Ye Z X, Li J, et al. Synthesis of anolyte based on alkyl sulfonate anthraquinone and its application in flow batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1317-1324.
35 Wang C X, Yu B, Liu Y Z, et al. N-Alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426.
36 Liu T B, Wei X L, Nie Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): 1501449.
37 DeBruler C, Hu B, Moss J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J]. Chem, 2017, 3(6): 961-978.
38 Liu W Q, Liu Y, Zhang H M, et al. A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density[J]. Chemical Communications(Cambridge, England), 2019, 55(33): 4801-4804.
39 Luo J, Hu B, Debruler C. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2018, 57(1): 231-235.
40 Beh E S, de Porcellinis D, Gracia R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644.
41 Liu L, Yao Y X, Wang Z Y, et al. Viologen radical stabilization by molecular spectators for aqueous organic redox flow batteries[J]. Nano Energy, 2021, 84: 105897.
42 Korshunov A, Gibalova A, Grünebaum M, et al. Host-guest interactions enhance the performance of viologen electrolytes for aqueous organic redox flow batteries[J]. Batteries & Supercaps, 2021, 4(6): 923-928.
43 DeBruler C, Hu B, Moss J, et al. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage[J]. ACS Energy Letters, 2018, 3(3): 663-668.
44 Huang M B, Hu S Z, Yuan X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022, 32(16): 2111744.
45 Jin S J, Fell E M, Vina-Lopez L, et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species[J]. Advanced Energy Materials, 2020, 10(20): 2000100.
46 Li Z J, Lu Y C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies[J]. Advanced Materials, 2020, 32(47): 2002132.
47 Wei X L, Xu W, Vijayakumar M, et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653.
48 Janoschka T, Martin N, Hager M D, et al. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system[J]. Angewandte Chemie International Edition, 2016, 55(46): 14427-14430.
49 Liu Y H, Goulet M A, Tong L C, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5(7): 1861-1870.
50 Janoschka T, Morgenstern S, Hiller H, et al. Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries[J]. Polymer Chemistry, 2015, 6(45): 7801-7811.
51 Hagemann T, Strumpf M, Schröter E, et al. (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing zwitterionic polymer as catholyte species for high-capacity aqueous polymer redox flow batteries[J]. Chemistry of Materials, 2019, 31(19): 7987-7999.
52 Fan H, Hu B, Li H B, et al. Conjugate-driven electron density delocalization of piperidine nitroxyl radical for stable aqueous zinc hybrid flow batteries[J]. Angewandte Chemie International Edition, 2022, 61(17): e202115908.
53 Hu S Z, Wang L W, Yuan X Z, et al. Viologen-decorated TEMPO for neutral aqueous organic redox flow batteries[J]. Energy Material Advances, 2021(1): 90-97.
54 Kozhunova E Y, Gvozdik N A, Motyakin M V, et al. Redox-active aqueous microgels for energy storage applications[J]. The Journal of Physical Chemistry Letters, 2020, 11(24): 10561-10565.
55 Milshtein J D, Su L, Liou C, et al. Voltammetry study of quinoxaline in aqueous electrolytes[J]. Electrochimica Acta, 2015, 180: 695-704.
56 Lin K, Gómez-Bombarelli R, Beh E S, et al. A redox-flow battery with an alloxazine-based organic electrolyte[J]. Nature Energy, 2016, 1: 1-8.
57 Chang D R, Kim Y, Jung S. Comprehensive study of the performance of alkaline organic redox flow batteries as large-scale energy storage systems[J]. International Journal of Energy Research, 2019, 43(9): 4449-4458.
58 Hollas A, Wei X L, Murugesan V, et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries[J]. Nature Energy, 2018, 3(6): 508-514.
59 Wang C X, Li X, Yu B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417.
60 Pang S, Wang X Y, Wang P, et al. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH[J]. Angewandte Chemie International Edition, 2021, 60(10): 5289-5298.
61 Zhang C K, Niu Z H, Peng S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): 1901052.
62 Orita A, Verde M G, Sakai M, et al. A biomimetic redox flow battery based on flavin mononucleotide[J]. Nature Communications, 2016, 7: 13230.
63 Hong J, Lee M, Lee B, et al. Biologically inspired pteridine redox centres for rechargeable batteries[J]. Nature Communications, 2014, 5: 5335.
64 Xu T, Yang Z, Liu Y, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: 100634.
65 Liu T L, Hu B, DeBruler C, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139: 1207-1214.
66 Aziz M J, Gordon R G, Xia K T, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2: 639-644.
67 Wang Q, Zhou M Y, Yu J Z, et al. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery[J]. Energy Storage Materials, 2020, 30: 431.
68 Zhang L, Qian Y, Feng R, et al. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries[J]. Nature Communications, 2020, 11(1): 3843.
69 Zu X H, Zhang L Y, Qian Y M, et al. Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2020, 59(49): 22163-22170.
70 Liu W Q, Zhao Z M, Li T Y, et al. A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery[J]. Science Bulletin, 2021, 66(5): 457-463.
71 Pinheiro D, Pineiro M, de Melo J S. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries[J]. Communications Chemistry, 2021, 4(1): 1-10.
72 Huang J H, Hu S Z, Yuan X Z, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie International Edition, 2021, 60(38): 20921-20925.
73 Liu Y Y, Lu S F, Chen S A, et al. A sustainable redox flow battery with alizarin-based aqueous organic electrolyte[J]. ACS Applied Energy Materials, 2019, 2(4): 2469-2474.
74 Carretero-González J, Castillo-Martínez E, Armand M. Highly water-soluble three-redox state organic dyes as bifunctional analytes[J]. Energy & Environmental Science, 2016, 9(11): 3521-3530.
75 Sikukuu Nambafu G. Organic molecules as bifunctional electroactive materials for symmetric redox flow batteries: a mini review[J]. Electrochemistry Communications, 2021, 127: 107052.
76 Singh V, Kim S, Kang J, et al. Aqueous organic redox flow batteries[J]. Nano Research, 2019, 12(9): 1988-2001.
77 Ding M, Chen G, Xu W C, et al. Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion[J]. Nano Materials Science, 2020, 2(3): 264-280.
78 Bao J, Murugesan V, Kamp C J, et al. Machine learning coupled multi-scale modeling for redox flow batteries[J]. Advanced Theory and Simulations, 2020, 3(2): 1900167.
79 Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365.
80 Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: hype or reality?[J/OL]. [2022-03-25]..
[1] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[4] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[5] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[6] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[7] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[8] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[9] 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454.
[10] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[11] 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
[12] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[13] 居涛, 李国辉, 耿凤霞. 一步法合成二维Ti3C2及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959.
[14] 周云龙, 林东尧, 叶校源, 孙博. 常见离子对玉米秸秆为牺牲剂的光催化制氢影响[J]. 化工学报, 2022, 73(2): 722-729.
[15] 张殷豪, 詹菲, 李城序, 于畅, 邱介山. 铵钒青铜基浓差流动电池的盐差发电性能研究[J]. 化工学报, 2022, 73(2): 857-864.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!