化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2806-2818.DOI: 10.11949/0438-1157.20220418
李彬1,3(),宋文明1,杨坤龙1,姜爽1,3(),张天永1,2,3()
收稿日期:
2022-03-25
修回日期:
2022-04-26
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
姜爽,张天永
作者简介:
李彬(1982—),男,博士,副教授,基金资助:
Bin LI1,3(),Wenming SONG1,Kunlong YANG1,Shuang JIANG1,3(),Tianyong ZHANG1,2,3()
Received:
2022-03-25
Revised:
2022-04-26
Online:
2022-07-05
Published:
2022-08-01
Contact:
Shuang JIANG,Tianyong ZHANG
摘要:
氧化还原液流电池(RFB)是有良好发展前景的电化学储能技术和大规模可再生能源存储的有效解决方案,其中水系有机氧化还原液流电池(AORFB)不仅成本低,还可以通过分子工程进行活性材料的理性设计,从而高效率地得到具有精准目标性能的新型活性材料。综述了AORFB活性材料的发展历程和研究现状,重点对不同结构活性材料的分子工程研究进行介绍。结合当前研究趋势,提出了活性材料分子工程研究未来发展的方向与思路。
中图分类号:
李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
Bin LI, Wenming SONG, Kunlong YANG, Shuang JIANG, Tianyong ZHANG. Molecular engineering research progress of active materials for aqueous organic flow batteries[J]. CIESC Journal, 2022, 73(7): 2806-2818.
1 | 杜祥琬. 碳达峰与碳中和引领能源革命[J]. 科学大观园, 2021 (19): 78. |
Du X W. Carbon peaking and carbon neutrality lead the energy revolution[J]. Grand Garden of Science, 2021 (19): 78. | |
2 | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
Zou C N, Zhao Q, Zhang G S, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. | |
3 | 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008. |
Zhou X X, Lu Z X, Liu Y M, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008. | |
4 | 黎淑娟, 李爱魁, 黄际元, 等. 储能在高占比可再生能源系统中的应用及关键技术[J]. 供用电, 2020, 37(2): 3-7, 40. |
Li S J, Li A K, Huang J Y, et al. The application and key technologies of energy storage in high-proportion renewable energy systems[J]. Distribution & Utilization, 2020, 37(2): 3-7, 40. | |
5 | 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25, 102. |
Ding M, Chen Z, Su J H, et al. An overview of battery energy storage system for renewable energy generation[J]. Automation of Electric Power Systems, 2013, 37(1): 19-25, 102. | |
6 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
Li X F, Zhang H Z, Zheng Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
7 | Thaller L H. Electrically rechargeable redox flow cell: US3996064[P]. 1976-12-07. |
8 | Liu W Q, Lu W J, Zhang H M, et al. Aqueous flow batteries: research and development[J]. Chemistry - A European Journal, 2019, 25(7): 1649-1664. |
9 | Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage[J]. Journal of Power Sources, 2021, 481: 228804. |
10 | 彭康, 刘俊敏, 唐珙根, 等. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263. |
Peng K, Liu J M, Tang G G, et al. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. | |
11 | 尤东江, 魏津云, 李雪菁, 等. 基于框架设计的液流电池流场优化模拟研究[J]. 化工学报, 2019, 70(11): 4437-4448. |
You D J, Wei J Y, Li X J, et al. Simulation study on flow field optimization of flow battery based on flow frame design[J]. CIESC Journal, 2019, 70(11): 4437-4448. | |
12 | Winsberg J, Hagemann T, Janoschka T, et al. Redox-flow batteries: from metals to organic redox-active materials[J]. Angewandte Chemie International Edition, 2017, 56(3): 686-711. |
13 | Wei X L, Pan W X, Duan W T, et al. Materials and systems for organic redox flow batteries: status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204. |
14 | 王翔. 全有机氧化还原液流电池混合溶剂和支持电解质的研究[D]. 天津: 天津大学, 2018. |
Wang X. Mixed solvents and supporting electrolytes for all-organic redox flow batteries[D]. Tianjin: Tianjin University, 2018. | |
15 | Zhang C K, Zhang L Y, Ding Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350. |
16 | Han C P, Li H F, Shi R Y, et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges[J]. Journal of Materials Chemistry A, 2019, 7(41): 23378-23415. |
17 | Yang B, Hoober-Burkhardt L, Wang F, et al. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples[J]. Journal of the Electrochemical Society, 2014, 161(9): A1371-A1380. |
18 | Yang B, Hoober-Burkhardt L, Krishnamoorthy S, et al. High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes[J]. Journal of the Electrochemical Society, 2016, 163(7): A1442-A1449. |
19 | Hoober-Burkhardt L, Krishnamoorthy S, Yang B, et al. A new Michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries[J]. Journal of the Electrochemical Society, 2017, 164(4): A600-A607. |
20 | Murali A, Nirmalchandar A, Krishnamoorthy S, et al. Understanding and mitigating capacity fade in aqueous organic redox flow batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1193-A1203. |
21 | Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
22 | Lin K X, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
23 | Yang Z J, Tong L C, Tabor D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018, 8(8): 1702056. |
24 | Kwabi D G, Lin K X, Ji Y L, et al. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906. |
25 | Ji Y L, Goulet M A, Pollack D A, et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Advanced Energy Materials, 2019, 9(12): 1900039. |
26 | Jin S J, Jing Y, Kwabi D G, et al. A water-miscible quinone flow battery with high volumetric capacity and energy density[J]. ACS Energy Letters, 2019, 4(6): 1342-1348. |
27 | Chai J C, Wang X, Lashgari A, et al. A pH-neutral, aqueous redox flow battery with a 3600-cycle lifetime: micellization-enabled high stability and crossover suppression[J]. ChemSusChem, 2020, 13(16): 4069-4077. |
28 | Luo J, Hu B, Debruler C, et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries[J]. Joule, 2019, 3(1): 149-163. |
29 | Hu B, Luo J, Hu M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie International Edition, 2019, 58(46): 16629-16636. |
30 | Ding Y, Li Y F, Yu G H. Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study[J]. Chem, 2016, 1(5): 790-801. |
31 | Wang C X, Yang Z, Wang Y R, et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1,4-naphthoquinone[J]. ACS Energy Letters, 2018, 3(10): 2404-2409. |
32 | Lee W, Park G, Kwon Y. Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives[J]. Chemical Engineering Journal, 2020, 386: 123985. |
33 | Tong L C, Goulet M A, Tabor D P, et al. Molecular engineering of an alkaline naphthoquinone flow battery[J]. ACS Energy Letters, 2019, 4(8): 1880-1887. |
34 | 吕腾, 叶子祥, 李泾, 等. 烷基磺酸蒽醌电解质的合成及其在液流电池中的应用[J]. 储能科学与技术, 2021, 10(4): 1317-1324. |
Lyu T, Ye Z X, Li J, et al. Synthesis of anolyte based on alkyl sulfonate anthraquinone and its application in flow batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1317-1324. | |
35 | Wang C X, Yu B, Liu Y Z, et al. N-Alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426. |
36 | Liu T B, Wei X L, Nie Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): 1501449. |
37 | DeBruler C, Hu B, Moss J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J]. Chem, 2017, 3(6): 961-978. |
38 | Liu W Q, Liu Y, Zhang H M, et al. A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density[J]. Chemical Communications(Cambridge, England), 2019, 55(33): 4801-4804. |
39 | Luo J, Hu B, Debruler C. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2018, 57(1): 231-235. |
40 | Beh E S, de Porcellinis D, Gracia R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. |
41 | Liu L, Yao Y X, Wang Z Y, et al. Viologen radical stabilization by molecular spectators for aqueous organic redox flow batteries[J]. Nano Energy, 2021, 84: 105897. |
42 | Korshunov A, Gibalova A, Grünebaum M, et al. Host-guest interactions enhance the performance of viologen electrolytes for aqueous organic redox flow batteries[J]. Batteries & Supercaps, 2021, 4(6): 923-928. |
43 | DeBruler C, Hu B, Moss J, et al. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage[J]. ACS Energy Letters, 2018, 3(3): 663-668. |
44 | Huang M B, Hu S Z, Yuan X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022, 32(16): 2111744. |
45 | Jin S J, Fell E M, Vina-Lopez L, et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species[J]. Advanced Energy Materials, 2020, 10(20): 2000100. |
46 | Li Z J, Lu Y C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies[J]. Advanced Materials, 2020, 32(47): 2002132. |
47 | Wei X L, Xu W, Vijayakumar M, et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653. |
48 | Janoschka T, Martin N, Hager M D, et al. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system[J]. Angewandte Chemie International Edition, 2016, 55(46): 14427-14430. |
49 | Liu Y H, Goulet M A, Tong L C, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5(7): 1861-1870. |
50 | Janoschka T, Morgenstern S, Hiller H, et al. Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries[J]. Polymer Chemistry, 2015, 6(45): 7801-7811. |
51 | Hagemann T, Strumpf M, Schröter E, et al. (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing zwitterionic polymer as catholyte species for high-capacity aqueous polymer redox flow batteries[J]. Chemistry of Materials, 2019, 31(19): 7987-7999. |
52 | Fan H, Hu B, Li H B, et al. Conjugate-driven electron density delocalization of piperidine nitroxyl radical for stable aqueous zinc hybrid flow batteries[J]. Angewandte Chemie International Edition, 2022, 61(17): e202115908. |
53 | Hu S Z, Wang L W, Yuan X Z, et al. Viologen-decorated TEMPO for neutral aqueous organic redox flow batteries[J]. Energy Material Advances, 2021(1): 90-97. |
54 | Kozhunova E Y, Gvozdik N A, Motyakin M V, et al. Redox-active aqueous microgels for energy storage applications[J]. The Journal of Physical Chemistry Letters, 2020, 11(24): 10561-10565. |
55 | Milshtein J D, Su L, Liou C, et al. Voltammetry study of quinoxaline in aqueous electrolytes[J]. Electrochimica Acta, 2015, 180: 695-704. |
56 | Lin K, Gómez-Bombarelli R, Beh E S, et al. A redox-flow battery with an alloxazine-based organic electrolyte[J]. Nature Energy, 2016, 1: 1-8. |
57 | Chang D R, Kim Y, Jung S. Comprehensive study of the performance of alkaline organic redox flow batteries as large-scale energy storage systems[J]. International Journal of Energy Research, 2019, 43(9): 4449-4458. |
58 | Hollas A, Wei X L, Murugesan V, et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries[J]. Nature Energy, 2018, 3(6): 508-514. |
59 | Wang C X, Li X, Yu B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417. |
60 | Pang S, Wang X Y, Wang P, et al. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH[J]. Angewandte Chemie International Edition, 2021, 60(10): 5289-5298. |
61 | Zhang C K, Niu Z H, Peng S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): 1901052. |
62 | Orita A, Verde M G, Sakai M, et al. A biomimetic redox flow battery based on flavin mononucleotide[J]. Nature Communications, 2016, 7: 13230. |
63 | Hong J, Lee M, Lee B, et al. Biologically inspired pteridine redox centres for rechargeable batteries[J]. Nature Communications, 2014, 5: 5335. |
64 | Xu T, Yang Z, Liu Y, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: 100634. |
65 | Liu T L, Hu B, DeBruler C, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139: 1207-1214. |
66 | Aziz M J, Gordon R G, Xia K T, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2: 639-644. |
67 | Wang Q, Zhou M Y, Yu J Z, et al. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery[J]. Energy Storage Materials, 2020, 30: 431. |
68 | Zhang L, Qian Y, Feng R, et al. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries[J]. Nature Communications, 2020, 11(1): 3843. |
69 | Zu X H, Zhang L Y, Qian Y M, et al. Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2020, 59(49): 22163-22170. |
70 | Liu W Q, Zhao Z M, Li T Y, et al. A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery[J]. Science Bulletin, 2021, 66(5): 457-463. |
71 | Pinheiro D, Pineiro M, de Melo J S. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries[J]. Communications Chemistry, 2021, 4(1): 1-10. |
72 | Huang J H, Hu S Z, Yuan X Z, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie International Edition, 2021, 60(38): 20921-20925. |
73 | Liu Y Y, Lu S F, Chen S A, et al. A sustainable redox flow battery with alizarin-based aqueous organic electrolyte[J]. ACS Applied Energy Materials, 2019, 2(4): 2469-2474. |
74 | Carretero-González J, Castillo-Martínez E, Armand M. Highly water-soluble three-redox state organic dyes as bifunctional analytes[J]. Energy & Environmental Science, 2016, 9(11): 3521-3530. |
75 | Sikukuu Nambafu G. Organic molecules as bifunctional electroactive materials for symmetric redox flow batteries: a mini review[J]. Electrochemistry Communications, 2021, 127: 107052. |
76 | Singh V, Kim S, Kang J, et al. Aqueous organic redox flow batteries[J]. Nano Research, 2019, 12(9): 1988-2001. |
77 | Ding M, Chen G, Xu W C, et al. Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion[J]. Nano Materials Science, 2020, 2(3): 264-280. |
78 | Bao J, Murugesan V, Kamp C J, et al. Machine learning coupled multi-scale modeling for redox flow batteries[J]. Advanced Theory and Simulations, 2020, 3(2): 1900167. |
79 | Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365. |
80 | Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: hype or reality?[J/OL]. [2022-03-25].. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[3] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[10] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[11] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[12] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[13] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[14] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[15] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 683
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||